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Problem 1 (1058 Chocolate). Key point is to calculate the minimal length of pq for four points
A,B,C,D satisfying that S4AXB = S4CXD where X = AD ∩BC, p ∈ AB, q ∈ CD and S4AY p =
S4DY q. AC//BD since S4AXB = S4CXD. Let Z = AB∩CD, if (cosZAD−cosZDA)∗(cosZBC−
cosZCB) < 0, then the length of pq is given by

(
pq

2
)2 = S4ZAD tan

Z

2
=

λ

1− λ
S4BAD

sinZ

1 + cosZ
,

λ =
AC

BD
, sinZ =

AB × CD
|AB||CD|

, cosZ =
AB · CD
|AB||CD|

,

AB × CD = AB ×D′A = BD′ ×BA = (1− λ)BD ×BA, S4BAD =
AB ×AD

2
,

pq =

√
2λ(AB ×AD)2

|AB||CD|(1 + cosZ)

Problem 2 (1132 Square Root). Find the square root of a modulo a prime n.

Problem 3 (1172 Ship Routes). Dynamic programming, calculate the number of strings s using N
characters of A,B,C each, such that s[0] == A and no 2 consecutive characters are identical. Let
dp[a, b, c, ch] be the number of strings starting with A, numbers of A,B,C are a, b, c respectively,
and that ends with ch ∈ {A,B,C}. The answer is

(dp[N,N,N,B] + dp[N,N,N,C])(N − 1)!N !2

2
,

Problem 4 (1199 Mouse). Single source shortest path using Dijkstra. Key point is to generate
the path of the mouse. Use i = (i + N − 1)%N instead of i = (i − 1)%N since taking modulo on
negative integers will produce negative answers.
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Problem 5 (1239 Ghost Busters). Project the ghosts onto the unit sphere, they become spherical
circles. Preprocess the ghosts so that their center lie on the unit sphere, we may assume ghost i has
center poi = (xi, yi, zi) and radius ri. An spherical circle has a plane it lies on and radius in radian:

xxi + yyi + zzi = ci =
√

1− r2
i , rad = arcsin ri,

For circle i and j, their intersections are determined as follows:

A =

(
1 poi · poj

poj · poi 1

)
,

(
u
v

)
= A−1

(
ci
cj

)
,

xmidymid
zmid

 =

xi xj
yi yj
zi zj

(u
v

)
Here pmid is the projection of the origin onto the line intersection of planes i and j. The above
calculation find the least square solution to the equation below

xxi + yyi + zzi = ci, xxj + yyj + zzj = cj ,

The direction of the line is dir =
poi×poj
|poi×poj | , with half the segment length halfseg =

√
1− |pmid|2.

So the intersections are

I1 = pmid + dir ∗ halfseg, I2 = pmid − dir ∗ halfseg,

Scan the 1
8 unit sphere from the north pole to equator. There are only three cases that would

change the order of intersection segments of circles: inserting north endpoint, deleting south end-
point, and intersection between circles. So my strategy is to enumerate all such critical latitudes,
for each latitude, scan from longitude 0 to π

2 and record the location that meets the most segments.
The original formula of inverse of a 2 ∗ 2 matrix has a bug, but now it is fixed.

Problem 6 (1266 Kirchhoff’s Law). Rewrite Solve() function to remove L matrix, and updated
all occurences of this function. Wrote findstringinfiles.sh to find all occurences of Solve() function.
Express the problem as a linear system with n variables and n equations, variables are potentials
at each node. At node 0, n− 1, the two equations are

potential[0] = 1, potential[n− 1] = 0,

At node i where 1 ≤ i ≤ n− 2, the equations are∑
j<i

(potential[j]− potential[i])rinv[j][i] =
∑
i<j

(potential[i]− potential[j])rinv[i][j],

where rinv[i][j] is the inverse resistence from node i to node j, i < j.

Problem 7 (1286 Starship Travel). We consider the arithmetic of the ring of Gaussian integers
Z[i], which is an Euclidean domain.

α = p+ qi, α = p− qi, iα = q + pi, d = gcd(α, α),

Assume that the initial and final positions are b, c ∈ Z[i], then the starship can move to the
destination if and only if d | c−b. Notice that Z[i] is a principal ideal domain, so we have (d) = (α, α).

Problem 8 (1310 ACM Diagnostics). Method 1: raw calculation and it received TLE-16. Method
2: dynamic programming, let dp[i][j] be the number of i-digits states that their sum equals j
modulo K. Initially dp[0][0] = 1, state transition equation is dp[i][j]+ = dp[i− 1][l] ∗ num, num is
the number of integers in [1,M ] that equals j − l modulo K. Then the answer state is calculated
from the highest digit to the lowest digit.
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Problem 9 (1318 Logarithm). Bitwise not operator is ∼ in c++.

∑
j,k

blog10(aj ∧ ak)c =
38∑
i=1

∑
j,k

(aj ∧ ak) ≥ 10i,

Another approach is to split [0, 10i − 1], 1 ≤ i ≤ 38 into 869 intervals.

I = [0, 10i − 1], Ik = I ∧ ak,

I can be written as union of some intervals, so is Ik.

Problem 10 (1368 Goat in the Garden 3). When K = n2 +(n+1)2, ans = 4n+4; when K = 2n2,
ans = 4n+ 2; when K = n(2n+ 1), ans = 4n+ 3; when K = (2n+ 1)(n+ 1), ans = 4n+ 5. In the
above four cases, we say that K is saturated. For non-saturated K value, construct the output of
saturated K value first and modify it.

Problem 11 (1371 Cargo Agency). Centroid decomposition. Notice that I wrote a hash function
to store the cost of an edge in it.

Problem 12 (1372 Death Star).

Problem 13 (1375 Bill Clevers). Given prime p and integer k, find x, y such that x2 + y2 ≡ k
mod p. Store rootmap[i ∗ i%p] = i and query rootmap[(k − i ∗ i)%p].

Problem 14 (1384 Goat in the Garden 4). Non-convex optimization. dirnum = 40, stepsizenum =
18, stepsize = 16./(1 << i), 0 ≤ i ≤ 17. Initial seeds are mid points of edges and polygon vertices.
Actually I implemented a gradient descent algorithm adopted from Boyd’s book ”Convex Optimiza-
tion”. Initial directions are randomly selected before each step.

Problem 15 (1387 Vasya’s Dad). Partition of an integer. Method 1: calculate all the partition of
integer N − 1 recursively.

dp[N ] =
∑

∑l
i=1 nipi=N−1

l∏
i=1

(
dp[pi] + ni − 1

ni

)
, p1 > p2... > pl,

Method 2: memorized search. Use memorizedstates dictionary to store calculated results of
solve(n,m). solve(n,m) represents the number of different forests with n vertices in total and the
size of trees not exceeding m. m is surely to decrease in recursion, and we calculate the multiplicity(
dp[k]+m−1

m

)
indicating m subtrees each size equal to k in each step.

Problem 16 (1396 Maximum Version 2). Suppose i is a maximum index, then i is odd, i =
2i1 + 1, i2 = i1 + 1, then either 1) i1 is even, at least one of i1

2 , i2 is a maximum index; or 2) i2 is
even, at least one of i2

2 , i1 is a maximum index. But I don’t know how to prove it. Thus candidate
indices from 2n to 2n+1 can be generated from calculated maximum indices from 2n−2 to 2n, in the
sense that if i is a maximum index, then there exists an maximum index j such that at least one of
the following four equalities holds

i = 4j + 1, i = 4j − 1, i = 2j + 1, i = 2j − 1,

Problem 17 (1420 Integer-Valued Complex Division). Implemented struct GaussianQT in this
problem. Since the norms of numerator and denominator of a

b exceed the range of long long, I
wrote BigInteger struct and got accepted for the first time.
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Problem 18 (1421 Credit Operations). Given two arrays indicating demands and bandwidths of
vertices of a complete bipartite graph KN,N , its edges’ capacities being 100, determine whether
the maximum flow is fully-loaded. Accepted using dinic maxflow algorithm copied from online
implementation. Reference: https://cp-algorithms.com/graph/dinic.html.

Problem 19 (1430 Crime and Punishment). Given 1 ≤ A,B,N ≤ 2e9, find x, y ≥ 0, such that
Ax + By ≤ N , and Ax + By attains maximum. Without loss of generality, assume that A >
B, gcd(A,B) = 1. If B = 1, then we can return the answer 0, N directly. Otherwise, let

A = kB +A1, k = bA
B
c, x0 = bN

A
c, y0 = bN −Ax0

B
c,

y1 = y − y0 − k(x0 − x), x1 = x,

A1x1 +By1 = Ax+By − kBx0 −By0 ≤ N − kBx0 −By0 , N1,

After translation and slope modification, exactly one of the following cases happens: 1) x0 = bN1
A1
c,

then we can directly solve the case A1x1 + By1 ≤ N1, and let x = x1, y = y1 + y0 + k(x0 − x1); 2)
x > bN1

A1
c and B > N1, then we must have x1 = x0, y1 = 0, the formula to get x, y is identical to

that in case 1); 3) x0 < bN1
A1
c and B ≤ N1, then we may discard those decision points that y1 = 0,

let x2 = x1, y2 = y1 − 1, then we have A1x2 + By2 ≤ N1 − B , N2, and we may solve the above
case recursively.

Problem 20 (1449 Credit Operations 2). Maximal weighted bipartite matching. Given a integer
coefficient matrix {wi,j}, 1 ≤ i, j ≤ N , find vli, v

r
j , 1 ≤ i, j ≤ N , such that vli + vrj ≥ wi,j holds for

every pair of i, j, and
∑N

i=1 v
l
i +
∑N

j=1 v
r
j attains its minimum. Its dual is: find a perfect matching

M ∈ KN,N such that the total weight of the matching
∑

(i,j)∈M wi,j attains its maximum. I imple-
mented Hungarian algorithm, reference: ti.inf.ethz.ch/ew/lehre/GT03/lectures/PDF/lecture6f.pdf.
This implementation can be viewed as a special case of primal-dual optimization method, because
it solves primal and dual problems alternately.

Primal formulation: maximum weighted bipartite matching. 0 ≤ ei,j ≤ 1,
∑

1≤j≤N ei,j = 1,∑
1≤i≤N ei,j = 1, find the maximum value of

∑
1≤i,j≤N wi,jei,j

Dual formulation: weighted bipartite minimum vertex cover. Constraints: vli + vrj ≥ wi,j , find

the minimum value of
∑N

i=1 v
l
i +
∑N

j=1 v
r
j .

Problem 21 (1453 Queen). If N = 1, then the answer is S−1. Otherwise as a rook, the queen can
move to N(S − 1) cells; as a bishop, assume that the queen is moving in direction ~d = (d1, ..., dN ),
di = ±1, and its original position is ~c = (c1, ..., cN ), we want to calculate the range of t ≥ 1 such that
~c+ t~d ∈ [S]N and we may sort ci in ascending order. Assume that I = {i, di = 1} = {i1, ..., ik, i1 <
i2... < ik}, J = {j, dj = −1} = {j1, ..., jl, j1 < j2... < il}, then the number of possible values of t is
mini∈I{s− ci} ∨mini∈J{ci − 1} where ∨ denotes the minimum operation. So the answer is

Answer = Ansrook +Ansbishop, Ansrook = N(S − 1),

Ansbishop =
∑
I⊂[N ]

min
i∈I
{s− ci} ∨min

i∈J
{ci − 1} =

∑
I⊂[N ], |I|6=0,N

(S − cik) ∨ (cj1 − 1) + c1 − 1 + S − cN ,

We only consider the case when k, l ≥ 1, and calculate the number of cases such that ik =
u, j1 = v for given 1 ≤ u 6= v ≤ N . 1) u > v, then the number of such cases is 2u−v−1; 2)
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v = u + 1, 1 ≤ u ≤ N − 1, the number of such cases is 1. So we may rewrite the above formula as
follows:

Ansbishop =
∑

1≤v<u≤N
2u−v−1(S− cu)∨ (cv− 1) +

∑
v=u+1,1≤u≤N−1

(S− cu)∨ (cv− 1) + c1− 1 +S− cN ,

Direct calculation yields an O(n2) algorithm, and my submission implementing this algorithm
got TLE-13. An improved algorithm divides all the points (u, v), 1 ≤ u ≤ N, 1 ≤ v ≤ u− 1 into two
regions. Region 1 on the upper right: S−cu < cv−1, and region 2 on the lower left: S−cu ≤ cv−1.
We may use the monotonicity of {ci} to calculate these two regions. It finds vmax of region 2 for
each fixed u from column u = N downto u = 1. Initially we set vmax = 0. Column summation
happens after determining vmax for a column,

ans + = (S − cu)

u−1∑
v=vmax

2u−v−1 = (S − cu)(1 + ...+ 2u−vmax−2) = (S − cu)(2u−vmax−1 − 1),

Row summation happens after each time when vmax + = 1,

ans + = (cvmax − 1)
u∑

u′=vmax+1

2u
′−vmax−1 = (cvmax − 1)(2u−vmax − 1),

Problem 22 (1455 Freedom of Speech). I used breadth first search at first, but later changed it
to Dijkstra’s shortest path algorithm. Vertices are (i, j), 0 ≤ j ≤ len(s[i]), indicating that the last
term is s[i] with matched length j. An additional vertex terminal is added indicating that we’ve
found the two required strings. There are two types of edges: i) k + len(s[j]) < len(s[i]), type = 0,
ii) k + len(s[j]) ≥ len(s[i]), type = 1, Wrote modified KMP algorithm to compute edges of the
graph. Direct edges from (i, 0) to terminal are excluded.

Problem 23 (1460 Wires). Claim: 1) auxiliary points has degree 3, and their 3 adjacent edges has
pairwise angle 2π

3 . This can be proved by calculus of variations.
2) It is impossible to have 3 auxiliary points. Otherwise the total degree of vertices is at least

13, contradiction.
3) The trilinear coordinate of the Fermat point (actually the first isogonic center) of a given

triangle ABC is sec(A − π
6 ) : sec(B − π

6 ) : sec(C − π
6 ), its barycentric coordinate is a

cos(A−π
6

) :
b

cos(B−π
6

) : c
cos(C−π

6
) , and I used this formula in computer program calculation.

3) We may enumerate every possible configurations: when there are no auxiliary points, we
calculate its minimal spanning tree using Prim’s algorithm. When there is only one auxiliary point,
this point is uniquely determined by the three points it connects to. When there are two auxiliary
points, the configuration is uniquely determined by the permutation of ABCD. auxpt1 is the
Fermat point of A,B, auxpt2, auxpt2 is the Fermat point of C,D, auxpt1.

Problem 24 (1464 Light). Sort vertices according to their polar angles. A container is used to
store segments in current region. Insertion or deletion are executed on boundary rays of regions.
Comparator is dynamic during the process of sweeping, it is represented by the distance from lamp
to the intersections of current region’s bisector with segments. Supports deletion by key, query the
nearest segment in current region, value is not needed since it’s dynamic while sweeping, so I use
std::set with delicately designed custom comparator. The comparator compares the distances from
the lamp to the intersections of the region bisector and segments.
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Problem 25 (1467 Sum of Degrees). Rewrite operator+ in BigNumber struct, and fixed some
bug in operator/. Accepted using python, c++ version using BigInteger struct is correct, but its
running time is too long. Why?

Used Chu-Vandemonde identity:
∑N

i=1

(
N
k

)
=
(
N+1
k+1

)
. In practice the rationals’ nominators and

denominators can be very large.

Problem 26 (1475 Ryaba Hen). Let ex be the direction parallel to the roof, ey perpendicular to
ex and points upwards. Then in the direction of ex, the egg’s motion is uniformly accelerated with
acceleration g sin θ, tan θ = H

l . In the direction of ey, the egg’s motion is periodic with period
T = 2v0

g . In each peroid [(n − 1)T, nT ], vy is uniformly accerlerated with acceleration −g cos θ
and initial velocity v0 cos θ. Accepted using python, Qifeng Chen’s BigNumber structs and mine.
It is worthwhile to note that I wrote a stress unit test for the first time for BigNumber struct.
Optimized multiplication in my BigNumber struct and implemented Karatsuba algorithm. Fixed a
bug in Qifeng Chen’s BigNumber division.

v0 sin θt+
1

2
g sin θt2 >

√
H2 + l2, t =

2nv0

g
,

sin θ =
H√

H2 + l2
, v0 =

√
2gh, n(n+ 1) >

H2 + l2

4Hh
,

Problem 27 (1476 Lunar Code). Dynamic programming from left to right. Consider the first i0 +1
columns, 1 ≤ i0 ≤ N − 1, let dp[a] be the number of 01 matrices of size M ∗ (i0 + 1), such that for
every 1 ≤ i ≤ i0,

|{j, A[j, i] = 0, A[j, i+ 1] = 1}| ≤ K,

The i0 + 2-th column has 2M possibilities, state transition is done by enumerate the number of
00, 01, 10, 11 substrings in the i0 + 1-th and i0 + 2-th columns.

Problem 28 (1482 Triangle Game). Notice that the original formula of inverse of 2 ∗ 2 matrix has
a bug.

Tθ =

(
cos θ − sin θ
sin θ cos θ

)
,

(
x0

y0

)
= (I − Tθ)

(
x1

y1

)
,

New discovery is that operator= is automatically constructed in a custom struct.

Problem 29 (1503 Polynomial). Implemented polynomial division with remainder for the first
time. The following partition is obtained by calculate gcd(p, p′) recursively.

p = p1p2...pk, pi+1|pi, pi has no multiple roots,

Since each pi has no multiple roots, we can run Newton’s iteration to get all its real roots.

Problem 30 (1511 Fiscal Operations). Given positive integers A,B,C, modify them to A1, B1, C1

such that A1 + B1 = C1 with the minimum `1 cost. Dynamic programming from right to the left.
Whether carry-over happens on the i-th digit are considered separatedly. Assume that

A = an...a0, B = bm...b0, C = ck...c0, A1 = a′n...a
′
0, B1 = b′m...b

′
0, C1 = c′k...c

′
0,

then we have
|a0 − a′0|+ |b0 − b′0|+ |c0 − c′0| ≥ |a0 + b0 − c0|, a′0 + b′0 = c′0,

|a0 − a′0|+ |b0 − b′0|+ |c0 − c′0| ≥ |a0 + b0 − c0 − 10|, a′0 + b′0 = c′0 + 10,
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Assume that n ≥ m, and let dp0[i] store the cost from the 0-th digit to the i-th digit with no
carry-over happen on the i-th digit, let dp1[i] store the cost from the 0-th digit to the i-th digit
with carry-over happen on the i-th digit. State transition equation when i ≤ m is

dp0[i] = min(dp0[i− 1] + |ai + bi − ci|, dp1[i− 1] + |ai + bi + 1− ci|),

dp1[i] = min(dp0[i− 1] + |ai + bi − ci − 10|, dp1[i− 1] + |ai + bi − ci − 9|),

State transition equation when i > m is

dp0[i] = min(dp0[i− 1] + |ai − ci|, dp1[i− 1] + |ai + 1− ci|), dp1[i] = dp1[i− 1] + 9− ai + ci,

Problem 31 (1531 Zones on a Plane). All the right-angled isosceles triangles can be classified into
8 classes according to the direction of their right angles. Raw calculation is used to help me finding
the pattern of the answers, and I found the following pattern. If n = 1, then answer = 1. If n = 2m
is even, then answer = 2m+2 − 4. If n = 2m+ 1 is odd, then answer = 3 · 2m+1 − 4. How to prove
it? It remains to be a problem, but I don’t want to solve it now.

Problem 32 (1554 Multiplicative Functions). Given a multiplicative function F : [N ]→ Z/2007Z, 1 ≤
N ≤ 10000, find its Dirichlet inverse G = F−1. I used the fact that the Dirichlet inverse of a mul-
tiplicative function is again multiplicative, so it suffices to calculate G(q) at prime powers q = pα.

Definition 1. A multiplicative function is an arithmetic function F : N → C with property that
F (1) = 1 and whenever a and b are coprime, then F (ab) = F (a)F (b).

If f, g : N→ C are two arithmetic functions, the Dirichlet convolution f ∗ g is a new arithmetic
function defined by

(f ∗ g)(n) =
∑
d|n

f(d)g(
n

d
) =

∑
ab=n

f(a)g(b),

This product occurs naturally in the study of Dirichlet series and describes the multiplication of
two Dirichlet series in terms of their coefficients.

(
∑
n≥1

f(n)

ns
)(
∑
n≥1

g(n)

ns
) =

∑
n≥1

(f ∗ g)(n)

ns
,

For each f having f(1) 6= 0, there exists an arithmetic function f−1 with f ∗ f−1 = ε, called the
Dirichlet inverse of f .

Problem 33 (1557 Network Attack). Given a undirected graph with possible self-loops and multiple
edges, find the number of ways to divide the graph into at least two connected components by
removing two edges. It suffices to find all bridges and 2-cuts of the graph. After deleting all the
bridges of the graph, there remained some 2-edge-connected components. There is no 2-cut such
that its edges lie in different components, so we may deal with the components separately. In each
component, there is no degree 1 vertex, and degree 2 vertices are removable.

Problem 34 (1562 GM-pineapple).

Answer =
a2b

8

∫ 1− 2i
n

1− 2(i+1)
n

π(1− z2)dz, 0 ≤ i ≤ n− 1,
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Problem 35 (1566 Triangular Postcards). If 4PQR can be included inside 4ABC, then there
exist a position such that two vertices of 4PQR lie on the sides of 4ABC. Assume that they are
P,Q.

1) P,Q lie on the same side of 4ABC.
2) P,Q lie on different sides. Assume that P ∈ CB,Q ∈ CA,CP = λ,CQ = µ, then

λ2 + µ2 − 2λµ cosC = r2 = sin2 C

2
(λ+ µ)2 + cos2 C

2
(λ− µ)2,

R = P +
q

r

(
cosP − sinP
sinP cosP

)
(Q− P ) =

(
λ+ q

r (µ cosC cosP − λ cosP − µ sinC sinP )
q
r (µ cosC sinP − λ sinP + µ sinC cosP )

)
Constraints are 0 ≤ λ ≤ a, 0 ≤ µ ≤ b, and three constraints depicting R ∈ 4ABC:

yR ≥ 0, xR sinC − yR cosC ≥ 0, BA×BR = (xA − xB)yR − yAxR + yAxB ≥ 0,

This problem can be solved by checking the sign of f(λ, µ) = λ2 + µ2 − 2λµ cosC on the boundary
of the polygon determined by the above 7 constraints.

Method 2: actually we only need to check case 1 in the discussion above. Avoid using trigono-
metric functions helps improve numerical accuracy.

Problem 36 (1591 Abstract Thinking). Given input integer N , consider N points on a unit cir-
cle, find the number of triple chords tuples such that they intersect pairwisely and at least one
intersection is strictly inside the circle. The answer is

4

(
N

4

)
+

(
N

5

)
+

(
N

6

)
Problem 37 (1594 Aztec Treasure). Calculate the number of domino tilings on a m× n rectangle
grid. Let m1 = dm2 e, n1 = dn2 e, the formula is given by

Zm,n(1, 1) =

m1,n1∏
j,k=1

(4 cos2 πj

m+ 1
+ 4 cos2 πk

n+ 1
),

where we define g(h, v) to be the number of tilings with h horizontal and v vertical dominoes.

Zm,n(x, y) =
∑
h,v

g(h, v)xhyv, h, v ≥ 0, 2(h+ v) = mn,

Swap m,n if necessary to make sure that m is even.

Zm,n(1, 1) =

m1,n1∏
j,k=1

(4 + 2 cos
2πj

m+ 1
+ 2 cos

2πk

n+ 1
),

Denote Pn1(x) =
∏n1
k=1(x + 2 cos 2πk

n+1), let xj = 4 + 2 cos 2πj
m+1 , 1 ≤ j ≤ m1, then the result

Zm,n(1, 1) =
∏m1
j=1 Pn1(xj). We may calculate Pn1 by induction. 1) n is even, now

Pn1(y +
1

y
) =

n1∏
k=1

(y +
1

y
+ 2 cos

2πk

n+ 1
) = yn1 − yn1−1...− y1−n1 + y−n1 ,

P1 = x− 1, P2 = x2 − x− 1, Pn1 = xPn1−1 − Pn1−2,
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and I let P0 = P−1 = 1 in my implementation. 2) n is odd, now

Pn1(y +
1

y
) =

n1∏
k=1

(y +
1

y
+ 2 cos

2πk

n+ 1
) =

(yn+1 − 1)(y − 1)

y + 1
,

P1 = x− 2, P2 = x2 − 2x, Pn1 = xPn1−1 − Pn1−2,

and I let P0 = 0 in my implementation.
Key point is to implement a struct representing algebraic integers of the form

x0 +
∑

1≤j≤m1

xj2 cos
2πj

m+ 1
, m = 2m1,

Its nontrivial arithmetic is essentially inside two methods named reduce() and totalreduce(). Notice
that taking modulo is admissible since all the terms above are integral.

Theorem 1 (Domino tilings). 1) The number of ways to cover an m×n rectangle with mn
2 dominoes

is given by
dm

2
e,dn

2
e∏

j,k=1

(4 cos2 πj

m+ 1
+ 4 cos2 πk

n+ 1
),

2) The number of tilings of an Aztec diamond of order n is 2
n(n+1)

2 .
3) The number of tilings of an augmented Aztec diamond of order n with 3 long rows in the

middle rather than 2 is D(n, n), a Delannoy number, defined as follows:

D(m,n) =

min(m,n)∑
k=0

(
m+ n− k

m

)(
m

k

)
=

min(m,n)∑
k=0

(
m

k

)(
n

k

)
2k,

∞∑
m,n=0

D(m,n)xmyn = (1− x− y − xy)−1,

∞∑
n=0

D(n, n)xn = (1− 6x+ x2)−
1
2 ,

Problem 38 (1599 Winding Number). Method 1: calculate
∑n

i=1 ∠PiXPi+1. Resulted in TLE-12.
Method 2: calculate intersection number of the polygon with ray y = yX , x ≥ xX .

Problem 39 (1600 Airport). Solve quadratic equation to get the time t of the first alarm. Pay
attention to machine epsilon of floating numbers.

Problem 40 (1620 Clever House). Markov process, for 0 ≤ i ≤ N , assume that vi indicates the
state that there are i lights on, assume that pti is the probability that there are i lights on at time
t, then the transition matrix M satisfies Mi,i−1 = i

N , Mi,i+1 = 1 − i
N . Initially we have p0

M = 1.
Let et be the expectation of how much light-bulbs will be on at time t, then we have

et =
∑

0≤j≤N
jptj , et+1 =

∑
0≤j≤N

jpt+1
j =

∑
0≤j≤N

j(
j + 1

N
ptj+1 + (1− j − 1

N
)ptj−1),

et+1 =
∑

0≤j≤N
(
j(j − 1)

N
+ (j + 1)(1− j

N
))ptj =

∑
0≤j≤N

(j + 1− 2j

N
)ptj = (1− 2

N
)et + 1,

eK = (
N − 2

N
)K(M − N

2
) +

N

2
,
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Problem 41 (1621 Definite Integral). Roots finding algorithms. Given an integer coefficient degree
4 polynomial with |ai| ≤ 106, a4 6= 0. Notice that the precision requirement is high, relative error
or absolute error is no more than 10−9.∫

|x|=ε

1

x
dx =

∫ 2π

0

e−iθ

ε
dεeiθ =

∫ 2π

0
idθ = 2πi,

So residue theorem says that if a meromorphic function f = g
x−x0 where g is holomorphic near x0,

then
∫
|x−x0|=ε fdx = 2πig(x0). Given P (x) = x4 + a3x

3 + a2x
2 + a1x+ a0, we want to eliminate a3

by translation x′ = x+ a3
4 .

P ′(x′) =P (x) = (x′ − a3

4
)4 + a3(x′ − a3

4
)3 + a2(x′ − a3

4
)2 + a1(x′ − a3

4
) + a0

=x′4 + 6x′2(
a3

4
)2 − 4x′(

a3

4
)3 + (

a3

4
)4 − 3x′2a3

a3

4
+ 3x′a3(

a3

4
)2 − a3(

a3

4
)3

+ a2x
′2 − 2x′a2

a3

4
+ a2(

a3

4
)2 + a1x

′ − a1
a3

4
+ a0

=x′4 + x′2(6(
a3

4
)2 − 3a3

a3

4
+ a2) + x′(−4(

a3

4
)3 + 3a3(

a3

4
)2 − 2a2

a3

4
+ a1)

+ (
a3

4
)4 − a3(

a3

4
)3 + a2(

a3

4
)2 − a1

a3

4
+ a0

=x′4 + x′2(−3a2
3

8
+ a2) + x′(

a3
3

8
− a2a3

2
+ a1)− 3a4

3

256
+
a2a

2
3

16
− a1a3

4
+ a0,

So we may define

a′2 = −3a2
3

8
+ a2, a′1 =

a3
3

8
− a2a3

2
+ a1, a′0 = −3a4

3

256
+
a2a

2
3

16
− a1a3

4
+ a0,

Now we substitute x′, P ′, a′ by x, P, a, it becomes

P (x) = x4 + a2x
2 + a1x+ a0 = (x2 − 2ax+ b)(x2 + 2ax+ c), a > 0, a2 < b, c,

Assume that it has two roots in the upper half plane x1 = −a+ ui, x2 = a+ vi, u, v > 0, then the
integral is∫

R

1

P (x)
dx = 2πi(

1

(x1 − x1)(x1 − x2)(x1 − x2)
+

1

(x2 − x1)(x2 − x1)(x2 − x2)
)

=
π

u(4a2 − u2 + v2 − 4aui)
+

π

v(4a2 − v2 + u2 + 4avi)
=
π((4a2 − u2 + v2)/u+ (4a2 − v2 + u2)/v)

16a4 + 8a2(u2 + v2) + (v2 − u2)2
,

where we used

(x1 − x2)(x1 − x2) = (−2a+ (u− v)i)(−2a+ (u+ v)i) = 4a2 − (u2 − v2)− 4aui,

(x2 − x1)(x2 − x1) = (2a+ (v − u)i)(2a+ (v + u)i) = 4a2 − (v2 − u2) + 4avi,

and the imaginary part is

4au/u

(4a2 − u2 + v2)2 + (4au)2
+

−4av/v

(4a2 − v2 + u2)2 + (4av)2
= 0,

(4a2 − u2 + v2)2 + (4au)2 = (4a2 − v2 + u2)2 + (4av)2 = 16a4 + 8a2(u2 + v2) + (v2 − u2)2,
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1) When a1 = 0, either one of the following two cases occur: i)a = 0, the integral becomes∫
R

1

(x2 + u2)(x2 + v2)
dx =

1

v2 − u2

∫
R

(
1

x2 + u2
− 1

x2 + v2
)dx =

1

v2 − u2
(
π

u
− π

v
),

where we used that∫ +∞

−∞

1

x2 + a2
dx =

∫ +∞

−∞

1/a

(xa )2 + 1
d
x

a
=

1

a
arctan

x

a

∣∣∣+∞
−∞

=
π

a
,

This result agrees with our previous calculation since

π((−u2 + v2)/u+ (−v2 + u2)/v)

(v2 − u2)2
=

1

v2 − u2
(
π

u
− π

v
),

P (x) = (x2 + u2)(x2 + v2) = x4 + (u2 + v2)x2 + u2v2,

and thus we can solve a quadratic equation to get values of u, v.
ii)a > 0, u = v, the integral becomes

8a2π(1/u)

16a4 + 16a2u2
=

π

2u(a2 + u2)
,

P (x) = (x2 + 2ax+ a2 + u2)(x2 − 2ax+ a2 + u2) = x4 + 2(u2 − a2)x2 + (a2 + u2)2,

and thus we can solve a linear equation to get values of a, u.
2) When a1 6= 0, notice that a2 is a algebraic number with degree 3.

a =
x2 + x2 − x1 − x1

4
, ã1 =

x1 + x2 − x1 − x2

4
=

(u+ v)i

2
, ã2 =

x1 + x2 − x1 − x2

4
=

(u− v)i

2
,

ã2
1 = −(u+ v)2

4
ã2

2 = −(u− v)2

4

Coefficients of P satisfy

P (x) = (x2+2ax+a2+u2)(x2−2ax+a2+v2) = x4+(u2+v2−2a2)x2+2a(v2−u2)x+(a2+u2)(a2+v2),

a2 = u2 + v2 − 2a2, a1 = 2a(v2 − u2), a0 = (a2 + u2)(a2 + v2),

a2 + ã2
1 + ã2

2 = a2 − u2 + v2

2
= −a2

2
,

a2(ã2
1+ã2

2)+ã2
1ã

2
2 = −a

2(u2 + v2)

2
+

(u2 − v2)2

16
= −a

2(u2 + v2)

2
+

(u2 + v2)2

16
−u

2v2

4
=

1

4
((
a2

2
)2−a0),

a2ã2
1ã

2
2 =

a2(u2 − v2)2

16
=

1

16
(
a1

2
)2,

R(x) = x3 + b2x
2 + b1x+ b0, x′ = x+

b2
3
,

b2 =
a2

2
, b1 =

a22
4 − a0

4
, b0 = −a

2
1

64
,

R(x) = x′3 + x′(−b
2
2

3
+ b1) +

2b32
27
− b1b2

3
+ b0 = S(x′),
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S(x) = x3 + c1x+ c0, c1 = −b
2
2

3
+ b1, c0 =

2b32
27
− b1b2

3
+ b0, x = y − c1

3y

T (y) = S(x) = y3 + c0 −
c3

1

27y3
, z = y3, ω = e

2πi
3 ,

x1 = y1 + y2, x2 = y1ω + y2ω
2, x3 = y1ω

2 + y2ω,

Use long double and one step Newton method to improve result’s accuracy.
Method 2: Find a square matrix such that P (x) is its characteristic polynomial. According to

rational canonical form, we may construct

A =


0 −a0

1 0 −a1

1 0 −a2

1 −a3

 , det(λI −A) = P (λ),

Then we may apply iterative algorithms that finds unsymmetric eigenvalues of matrix A. But I
haven’t implemented this idea successfully.

Problem 42 (1625 Hankel Matrix). A Hankel matrix is a matrix of the form

A =


α1 α2 α3 ... αn
α2 α3 α4 ... αn+1

α3 α4 α5 ... αn+2

... ... ... ... ...
αn αn+1 αn+2 ... α2n−1


Given the size of the matrix n, find an integer Hankel matrix of size n with all non-negative elements
and with determinant equal to one. Moreover, all its square submatrices containing upper left cell
must also have determinant equal to one. Refering to acm.timus.ru/forum/thread.aspx?id=21158,
my output is the sequence of Catalan numbers. Let

α1 = 1, α2 = 1, α3 = 2, α4 = 5, α5 = 14, ..., αn =
n−1∑
i=1

αiαn−i, n ≥ 2,

Define the generating function f(x) =
∑∞

n=1 αnx
n, then by the recurrence relation above, we have

the functional equation

f(x) = f(x)2 + x, f(x) =
1−
√

1− 4x

2
,

The sign in front of
√

1− 4x is chosen in the way that f(x) is monotonic increasing w.r.t. x.

√
1− 4x =

∑
n≥0

(1
2

n

)
(−4x)n,

(1
2

n

)
= (−1)n−1 (2n− 3)!!

n!2n
,

√
1− 4x = −

∑
n≥0

(2n− 3)!!2n

n!
xn = 1− 2

∑
n≥1

(2n− 2)!

n!(n− 1)!
xn,

So we know that

f(x) =
∑
n≥1

(2n− 2)!

n!(n− 1)!
xn =

∑
n≥1

1

n

(
2n− 2

n− 1

)
xn, αn =

1

n

(
2n− 2

n− 1

)
,
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Theorem 2 (Catalan Hankel determinants). For the Catalan numbers {αn}n≥1 = {1, 1, 2, 5, 14, ...},
αn+1 = 1

n+1

(
2n
n

)
, let Ctn = (αi+j+t+1)0≤i,j≤n−1 denote the Hankel matrix. Then for n ≥ 1, the

following identities hold:

detC0
n = detC1

n = 1, detC2
n = n+ 1, detC3

n =
(n+ 1)(n+ 2)(2n+ 3)

6
,

Proof. 1) We focus on t = 0 case firstly, and give the Cholesky decomposition A = CtC of matrix
A = C0

n, where C is upper triangular and has positive diagonals. Let C = (cij)0≤i,j≤n−1, then its
elements are given by cij = 2i+1

i+j+1

(
2j
j−i
)
. Notice that cij = 0 when i > j. It suffices to prove the

following combinatorial identity, which is equivalent to
∑

k ckickj = αi+j+1:∑
k

(2k + 1)2

(k + i+ 1)(k + j + 1)

(
2i

i− k

)(
2j

j − k

)
=

1

i+ j + 1

(
2i+ 2j

i+ j

)
,

2k + 1

k + i+ 1

(
2i

i− k

)
= (

1

i− k
− 1

k + i+ 1
)

(2i)!

(i− k − 1)!(i+ k)!
=

(
2i

i− k

)
−
(

2i

i− k − 1

)
= coeff < xi−k, (1 + x)2i(1− x) >,

2k + 1

k + j + 1

(
2j

j − k

)
=

(
2j

j − k

)
−
(

2j

j − k − 1

)
= coeff < xk−j , (1 +

1

x
)2j(1− 1

x
) >,

Without loss of generality, we assume that 0 ≤ i ≤ j, then the range of k is 0 ≤ k ≤ i. We perform
the following decomposition:

coeff < xi−j , (1 + x)2i(1− x)(1 +
1

x
)2j(1− 1

x
) >= I + II,

I ,
∑

0≤l≤i
coeff < xl, (1 + x)2i(1− x) > coeff < xi−j−l, (1 +

1

x
)2j(1− 1

x
) >,

II ,
∑

i+1≤l≤2i+1

coeff < xl, (1 + x)2i(1− x) > coeff < xi−j−l, (1 +
1

x
)2j(1− 1

x
) >,

We get the following identity from the calculation above.∑
k

(2k + 1)2

(k + i+ 1)(k + j + 1)

(
2i

i− k

)(
2j

j − k

)
= I,

On the other hand, we can show that I = II as follows. Let p = 2i+ 1− l, we have

coeff < xl, (1 + x)2i(1− x) >= coeff < x−l, (1 +
1

x
)2i(1− 1

x
) >= coeff < xp, (x+ 1)2i(x− 1) >,

coeff < xi−j−l, (1 +
1

x
)2j(1− 1

x
) >= coeff < xj−i+l, (1 + x)2j(1− x) >

= coeff < xi−j−p, (
1

x
+ 1)2j(

1

x
− 1) >,

In the last step we used j− i− l− (2j+ 1) = i− j− p. So we see that I = II is indeed true. Finally
we have

I + II = coeff < xi−j , (1 + x)2i(1− x)(1 +
1

x
)2j(1− 1

x
) >

=coeff < xi+j , (1 + x)2i+2j(2− x− 1

x
) >= 2

(
2i+ 2j

i+ j

)
−
(

2i+ 2j

i+ j − 1

)
−
(

2i+ 2j

i+ j + 1

)
=

(
2i+ 2j

i+ j

)
(2− 2(i+ j)

i+ j + 1
) =

2

i+ j + 1

(
2i+ 2j

i+ j

)
,
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So the desired identity holds since LHS = I = 1
2(I + II).

2) Secondly, when t = 1, let A = C1
n. Assume its Cholesky decomposition is A = CtC, C =

(cij)0≤i,j≤n−1, then its elements are given by cij = i+1
j+1

(
2j+2
j−i
)
. It suffices to prove that

∑
k ckickj =

αi+j+2, which is equivalent to the following combinatorial identity:

∑
k

(k + 1)2

(i+ 1)(j + 1)

(
2i+ 2

i− k

)(
2j + 2

j − k

)
=

1

i+ j + 2

(
2i+ 2j + 2

i+ j + 1

)
,

k + 1

i+ 1

(
2i+ 2

i− k

)
= (

1

i− k
− 1

i+ 1
)

(2i+ 2)!

(i+ k + 2)!(i− k − 1)!
=

(
2i+ 2

i− k

)
− 2

(
2i+ 1

i− k − 1

)
= coeff < xi−k, (1 + x)2i+2 − 2x(1 + x)2i+1 >= coeff < xi−k, (1− x)(1 + x)2i+1 >,

k + 1

j + 1

(
2j + 2

j − k

)
= coeff < xk−j , (1− 1

x
)(1 +

1

x
)2j+1 >,

We assume that 0 ≤ i ≤ j, then the range of k is 0 ≤ k ≤ i.

coeff < xi−j , (1− x)(1 + x)2i+1(1− 1

x
)(1 +

1

x
)2j+1 >= I + II,

I ,
∑

0≤l≤i
coeff < xl, (1− x)(1 + x)2i+1 > coeff < xi−j−l, (1− 1

x
)(1 +

1

x
)2j+1 >,

II ,
∑

i+2≤l≤2i+2

coeff < xl, (1− x)(1 + x)2i+1 > coeff < xi−j−l, (1− 1

x
)(1 +

1

x
)2j+1 >,

It is easy to see that coeff < xi+1, (1− x)(1 + x)2i+1 >= 0, and we have the following identity:

∑
k

(k + 1)2

(i+ 1)(j + 1)

(
2i+ 2

i− k

)(
2j + 2

j − k

)
= I,

Similar to the case t = 0, we can show that I = II as follows. Let p = 2i+ 2− l, we have

coeff < xl, (1− x)(1 + x)2i+1 >= coeff < xp, (x− 1)(x+ 1)2i+1 >,

coeff < xi−j−l, (1− 1

x
)(1 +

1

x
)2j+1 >= coeff < xi−j−p, (

1

x
− 1)(

1

x
+ 1)2j+1 >,

So we see that I = II is true again. Finally we have

I + II = coeff < xi−j , (1− x)(1 + x)2i+1(1− 1

x
)(1 +

1

x
)2j+1 >

=coeff < xi+j+1, (1 + x)2i+2j+2(2− x− 1

x
) >= 2

(
2i+ 2j + 2

i+ j + 1

)
−
(

2i+ 2j + 2

i+ j

)
−
(

2i+ 2j + 2

i+ j + 2

)
=

(
2i+ 2j + 2

i+ j + 1

)
(2− 2(i+ j + 1)

i+ j + 2
) =

2

i+ j + 2

(
2i+ 2j + 2

i+ j + 1

)
,

And LHS = I = 1
2(I + II) follows.

Problem 43 (1626 Interfering Segment). Reference: Computational geometry - algorithms and
applications, chapter 2, line segment intersection. Introduction to algorithms 3rd edition, chapter
33, determining whether any pair of segments intersects.
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Assume that the polygon is P1P2...Pn. 4ABC is part of a legal triangulation ⇐⇒ each
of AB,BC,AC divides the polygon into two parts. Only if part is trivial. If part: assume that
ΩA,ΩB,ΩC are the parts of the polygon that don’t contain A,B,C after divided by BC,CA,AB
respectively, then each of them is a polygon without self intersection. So ΩA,ΩB,ΩC can be trian-
gulated, adding 4ABC to obtain a triangulation of the original polygon.

X ∈ 4ABC ⇐⇒ X /∈ ΩA,ΩB,ΩC ,

Preprocessing: for any pair i, j not next to each other, judge if PiPj intersect with any edge besides
Pi−1Pi, PiPi+1, Pj−1Pj , PjPj+1, store these boolean variables in flag[i][j]. If flag[i][j] == true,
judge if X is on the Pi+1...Pj−1 side or Pj+1...Pi−1 side of PiPj , or is exactly on PiPj , and store it
in sideX[i][j]. flag[i][i + 1] is always true. Denote by lX the ray y = yX , x ≥ xX , fix i and let j
iterate from i + 1 to i − 1, we may maintain the intersection number of lX with PiPi+1...Pj , and
thus know sideX[i][j]. Similarly we get sideY [i][j].

Problem 44 (1637 Triangle Game 2). 1) Oriented transform: 0 or 2;
2) Non-oriented transform: 1 or 3. Reflector about the axis R(cos θ, sin θ) is given by

Tθ =

(
cos 2θ sin 2θ
sin 2θ − cos 2θ

)
,

(
x
y

)
7→ Tθ

(
x
y

)
Problem 45 (1659 Regular Triangles). Pattern is first found in a unit circle.

Problem 46 (1660 The Island of Bad Luck). Method 1: calculating Apollonian circles, but I didn’t
use this method. 1) Assume that

l0 : y = y0, l1 : y = y1, y0 > y1, l2 : x2 + (y − y1 − r2)2 = r2
2, r2 <

y0 − y1

2
,

Find the equation of circle ω such that ω is tangent to l0, l1, l2. rω = y0−y1
2 . There are two solutions,

ω1 : (x− 2
√
r2rω)2 + (y − y0 + y1

2
)2 = r2

ω,

ω2 : (x+ 2
√
r2rω)2 + (y − y0 + y1

2
)2 = r2

ω,

where ω1 is on the left, ω2 is on the right.
2) In the original problem, assume that the large circle and small circle are Γ0,Γ2, victim’s circle

is Γ1. We’ve already known that Γ0 has radius R, Γ2 has radius r, distance of their centers is d.
Assume that Γ0,Γ1 are tangential at P (0, R), and let it be the inversion center with radius

√
2R.

More precisely, the inversion is

ϕ : (x, y) 7→ (
2R2x

x2 + (y −R)2
,

2R2(y −R)

x2 + (y −R)2
+R),

Γ0 7→ l0 : y = 0, Γ1 7→ l1 : y = R− R

r2
1

,

Assume that the center of the small circle is (d sin θ, d cos θ), then the equation of Γ2 is

Γ2 : (x− d sin θ)2 + (y − d cos θ)2 = r2,

l2 = ϕ(Γ2) : (
2R2x

x2 + (y −R)2
− d sin θ)2 + (

2R2(y −R)

x2 + (y −R)2
+R− d cos θ)2 = r2,
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4R4

x2 + (y −R)2
+

2R2(y −R)(R− d cos θ)− 2R2xd sin θ

x2 + (y −R)2
+R2 − 2Rd cos θ + d2 − r2 = 0,

I didn’t implement this method since Möbius transformation formulas turned out to be too com-
plicated without using complex analysis.

Method 2: we only consider the case when θ = 0.

Γ2 : x2 + (y − d)2 = r2, ϕ(Γ2) = Γ4,

All the possible circle chain configurations can be regarded as the orbit of a particular configuration
under the action of SO(2). When d = 0, the action is exactly rotation around the common center
of the two circles. When d 6= 0, assume that the center of the small circle is (0, d), then there is
a transformation that fixes Γ0 and takes Γ2 to a circle centered at the origin. More precisely, find
the circle Γ3 which is orthogonal to both Γ1,Γ2. Its center is on the radical axis lrad of Γ0,Γ2, with
radius equals to length of tangents, so its equation is

lrad : 2dy = R2 + d2 − r2, Γ3 : x2 + (y − R2 + d2 − r2

2d
)2 = (

R2 + d2 − r2

2d
)2 −R2,

Using complex analysis, an orientation preserving auto morphism of the unit disk is

f : z 7→ z − w
1− wz

, |w| < 1, f ′(z) =
1− ww

(1− wz)2
, f−1(z) =

z + w

1 + wz
,

Let w = x0 + y0i, z = x+ yi, the formula of this transformation is

f(x+ yi) =
(x− x0) + (y − y0)i

1− x0x− y0y + (y0x− x0y)i
=

(z − w)(1− wz)
(1− x0x− y0y)2 + (y0x− x0y)2

=
x+ yi+ (x2

0 − y2
0 + 2x0y0i)(x− yi)− (x0 + y0i)(1 + x2 + y2)

1− 2(x0x+ y0y) + (x2
0 + y2

0)(x2 + y2)

It becomes too long, so I used its complex form in my implementation. In this scenario, we change
the disk radius to R and let <(w) = 0. We have

f(z) =
z − w
1− wz

R2

, w = (
R2 + d2 − r2

2d
−
√

(
R2 + d2 − r2

2d
)2 −R2)i

Since f(w) = 0, f ′(w) ∈ R we know that f maps Γ3 to R. We may regard it as a translation in the
group of hyperbolic automorphisms of Γ0. Denote the first and the last circles by ΩA,ΩB. Observe
that the required minimum distance between ΩA,ΩB is obtained when they are symmetric along
the y-axis. Γ4 is the image of Γ2 by translation, assume that it has radius r4. The image of the first
circle by translation is

|z − zA| =
R− r4

2
, zA = r4 sin

δθ

2
+ i cos

δθ

2
,

where δθ is the angle between centers of f(ΩA), f(ΩB). It is an invariant since Γ0,Γ4 are concentric.
In my program, three points are selected on f(ΩA), and ΩA is obtained by finding the circumcircle
of preimages of the three points.

Problem 47 (1661 Dodecahedron). The symmetry group of dodecahedron in SO(3) is A5. Assume
that its edges are e1, ..., e30. Given c1, ..., c30 ∈ [30] = {1, 2, ..., 30}, find the number of different
dodecahedra. A coloring is to give each edge ei a color c[si], where s ∈ S30 is a permutation.
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Two coloring s1, s2 are identical means there exists σ ∈ A5 ⊂ S30, such that for any 1 ≤ i ≤ 30,
c[s2(σ(i))] = c[s1(σ(i))]. Ignoring c and A5, all the possible color assignments can be regarded as
the permutation group S30. There is a subgroup G of S30 determined by c, such that

c ◦ s2 = c ◦ s1 : [30]→ [30] ⇐⇒ exists g ∈ G, g ◦ s2 = s1, s1, s2 ∈ S30, G =
∏
x∈[30]

Sc−1(x),

G is the product of permutation groups on each fiber of c. So S30 is given a double coset structure
Gy S30 x A5, and we are asked to calculate its cardinality.

The orbits of S30 x A5 are S30/A5, the set of right cosets of A5 in S30. Similarly, the orbits
of G y S30 are G\S30, the set of left cosets of G in S30. We may assume that the image of c is
1, 2, ..., k, and |c−1(i)| = ni,

∑
1≤i≤k ni = 30. Our task is to calculate |G\S30/A5|.

X = G\S30 can be described as all the sequences d1, ..., d30 in which i appear ni times, 1 ≤ i ≤ k.
Burnside’s lemma says that

|X/A5| =
1

|A5|
∑
σ∈A5

|Xσ|, Xσ = {x ∈ X,σ(x) = x},

Elements of A5 can be divided into 4 classes: identity, 15 order 2 elements, 20 order 3 elements, 24

order 5 elements. Let σl ∈ A5 be an element with order l. i) l = 1, 3, 5, then |Xσl | = ( 30
l

)!∏
(
ni
l

)!
when l

divides each ni, otherwise |Xσl | = 0. ii) l = 2, if the number of odds in ni is larger than 2, |Xσl | = 0;

if there are odds in ni then |Xσl | = ( 30
l

)!∏
(
ni
l

)!
; otherwise there are 2 odds in ni, |Xσl | = 2∗(14)!∏

(bni
l
c)! . Used

Qifeng Chen’s BigInteger struct for large number calculation, and made some modifications. One
precious experience is that, never ever inherit from any std:: type, except for the standard types
you’re supposed to inherit from. Accepted using both implementations of BigInteger of mine and
Qifeng Chen’s.

Proof. Assume Gy X is a left group action.

Xg = {x ∈ X, g(x) = x}, Gx = {g ∈ G, g(x) = x}, |orbit(x)| = |G|
|Gx|

,

1

|G|
∑
g∈G
|Xg| = 1

|G|
∑
x∈X
|Gx| =

∑
x∈X

1

|orbit(x)|
= |X/G|,

Problem 48 (1662 Goat in the Garden 6). Note that the bed is a convex polygon P1P2...Pn.
Let Dr =

⋃
p∈polygon�(p, r), we need to determine whether

⋂
p∈polygon�(p,R) ∩ Dr is nonempty.⋂

p∈polygon�(p,R) =
⋂

1≤i≤n�(Pi, R) is an convex set. For any p /∈ Dr, let q be its projection
onto ∂Dr. If p ∈

⋂
1≤i≤n�(Pi, R), then q ∈

⋂
1≤i≤n�(Pi, R), so it sufficies to check if ∂Dr ∩⋂

1≤i≤n�(Pi, R) is nonempty. ∂Dr can be divided into n arcs and n segments. 1) Segment circles
intersection.

2) For an arc AB ∈ �(O, r) and �(X,R), i) Both AX > R,BX > R hold, then AB∩�(X,R) is
empty since O,X lie on the same side of AB. ii) OX ≤ R−r, check the next circle. iii) OX > R−r,
get intersection C,D and judge that if AB split into two parts. Assume µ is the signed length of
OH the direction of XH, ν = HC, then

R2 − r2 = XH2 −OH2 = 2µXO +XO2, ν =
√
r2 − µ2,
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Problem 49 (1668 Death Star 2). AN×M , bN , find xM such that ‖Ax− b‖22 reaches minimum. If
the solution is ambiguous, output the one that ‖x‖22 is the minimum. Let A = UsV t be the singular
value decomposition of A,

sinv[i] =

{
1
s[i] , s[i] > 0,

0, s[i] = 0.
, Ainv = V sinvU t

Then we claim that x = Ainvb. While calculating SVD, we use Golub-Kahan bidiagonalization in
phase 1. Householder reflection is given by

x = Ak:m,k, vk = sign(x1)‖x‖2e1 + x, vk =
vk
‖vk‖2

, Ak:m,k:n− = 2vk(v
∗
kAk:m,k:n)

Householder reflector: x 7→ Fx = ±‖x‖e1. Givens rotation acting on the i, j-th rows or columns:

G(i, j, θ) =

(
cos θ sin θ
− sin θ cos θ

)
. How to use Givens rotations to eliminate the off-diagonal elements?

Actually the remaining steps after bidiagonalization only use Givens rotations.

Problem 50 (1675 Lunar Code 2).

2mn =

m−1,n−1∑
k,l=0

(
m

k

)(
n

l

)
F (m− k, n− l) + 1, F (0, 0) = 1,

f(x, y) =
∑
k,l

F (k, l)xkyl, 2mn = coeff < 1, f(1 + x−1)m(1 + y−1)n >,

A more efficient way is to use the following identity which calculates the number of matrices with
each rows not all zero:

n∑
l=1

(
n

l

)
F (m, l) = (2n − 1)m,

Assume that yn = F (m,n), bn = (2n − 1)m, we want to solve the inverse problem of the linear
system above. The system and its solution are given by

n∑
l=1

(
n

l

)
yl = bn, yn =

n−1∑
l=0

(−1)l
(
n

l

)
bn−l,

Its proof is essentially the following combinatorial identity:∑
1≤i+l=m≤n−1

(
n

i

)(
n− i
l

)
(−1)l = coeff < xm, (1 + x)n(1 + x)−n >= 0,

Python program is correct but got TLE-7, so I wrote a c++ program in addition. Another attempt
is to use generating function:

f(x) =
∑
n≥1

ynx
n, g(u) =

∑
n≥1

bnu
n, bn = coeffx < xn, f(x)(1 + x)n >,

g(u) = coeffx < 1,
∑
n≥1

(1 + x−1)nf(x)un >,
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yn = coeffu′ < u′n, (1− u′)ng(u′) >, f(x) = coeffu′ < 1,
∑
n≥1

(u′−1 − 1)ng(u′)xn >,

g(u) = coeffu′,x < 1, g(u′)
∑
m≥1

(u′−1 − 1)mxm
∑
n≥1

(1 + x−1)nun >,

We may consider such a scenario that x, u, u′ ∈ C, 1 > |u′| > |x| > |u| > 0, such that the following
two series are convergent:∑

m≥1

(u′−1 − 1)mxm =
( xu′ − x)

1− x
u′ + x

,
∑
n≥1

(1 + x−1)nun =
(u+ u

x)

1− u− u
x

,

g(u) =

∫
x

f(x)(u+ u
x)

1− u− u
x

dx

2πix
, f(x) =

∫
u′

g(u′)( xu′ − x)

1− x
u′ + x

du′

2πiu′
,

g(u) =

∫
u′,x

g(u′)( xu′ − x)(u+ u
x)

(1− x
u′ + x)(1− u− u

x)

du′

2πiu′
dx

2πix
,

Can we verify our result using Fourier analysis and complex analysis method?

K(u, u′) =
1

2πi

∫
x

( 1
u′ − 1)(ux+ u)dx

(( 1
u′ − 1)x− 1)((u− 1)x+ u)

=
( 1
u′ − 1)u( u

1−u + 1)

(( 1
u′ − 1) u

1−u − 1)(u− 1)
=

(1− u′)u
(u′ − u)(1− u)

,

In the above identity, I used residue theorem. For fixed u, u′ ∈ C, consider x = re2πiθ such that
1 > |u′| > |x| > |u| > 0, the only pole of the integrand in the region |x| ≤ r is x = u

1−u . So it
suffices to verify that

g(u) =
1

2πi

∫
u′
g(u′)

u(1− u′)du′

u′(u′ − u)(1− u)
,

Since g(0) = 0, the only pole of the integrand in the region |u′| ≤ r0 is u′ = u, so the above identity
holds by residue theorem.

An attempt to deduce Poisson kernel:

g(u′) =
∑
n≥1

bnu
′n, g(u) =

∑
n≥1

bnu
n, |u′| = r0, |u| = r1, u′ = r0e

2πiξ, u = r1e
2πiη,

f0(ξ) , g(u′) =
∑
n≥1

bnr
n
0 e

2πinξ, bnr
n
0 =

∫
T
f0(ξ)e−2πinξdξ,

f1(η) , g(u) =
∑
n≥1

∫
T
f0(ξ)e−2πinξdξr−n0 rn1 e

2πinη =

∫
T
f0(ξ)

∑
n≥1

(
r1

r0
)ne2πin(η−ξ)dξ,

∑
n≥1

(
r1

r0
)ne2πin(η−ξ) =

r1
r0
e2πi(η−ξ)

1− r1
r0
e2πi(η−ξ) =

u

u′ − u
, g(u) =

1

2πi

∫
u′
g(u′)

udu′

u′(u′ − u)
,

Problem 51 (1682 Crazy Professor). Disjoint set. Implemented this struct with path compression
and union by rank heuristics.

Problem 52 (1691 Algorithm Complexity). Given a graph G with n vertices and m edges, which
doesn’t contain multiple arcs but may contain loops. Let F (N) be the number of walks of length N
from vertex ns to vertex nt, find the growth order of F (N). Assume that the adjacency matrix of G
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is A, then A is unsymmetric with 0-1 entries, F (N) = AN [ns, nt]. Using the method of generating
function, we get∑

N≥0

AN tN = (I −At)−1, Answer = coeff < tN , (I −At)−1[ns, nt] >,

Consider the special case whenG is a directed acyclic graph, and assume that vertices v1, v2, ..., vn
are sorted topologically. Then A is a upper triangular 0-1 matrix. We may assume that ns = 1 and
nt = n by only considering the subgraph generated by vertices numbered from ns to nt. Now F (N)
reaches its maximum when A[i, j] = 1 for all i ≤ j. In this scenario, we may write

A = I +B +B2 + ...+Bn−1, B[i, i+ 1] = 1, 1 ≤ i ≤ n− 1, Bn = 0, A = (I −B)−1,

Goal is to calculate the coefficient of Bn−1 in the expansion of AN = (I −B)−N .

(I −B)−N =
∑

0≤i≤n−1

(
i+N − 1

i

)
Bi,

(
n+N − 2

n− 1

)
= O(Nn−1),

Assume that the order of F (N) is f , we know that f is at most n− 1. How to determine its exact
value? There are two cases depending on whether vn can be reached from vn−1. Assume F0(N) is
the number of length N paths that don’t pass by vn−1, F1(N) is the number of paths that pass by
vn−1.

1) A[n− 1, n] = 0, then no path from v1 to vn passes through vn−1, we can remove this vertex
and the number of vertices is reduced to n− 1, f = f0.

2) A[n − 1, n] = 1, then any path from v1 to vn can be classified by whether it passes by vn−1

or not. F0(N) can be calculated from the subgraph excluding vn−1. f = max(f0, f1).
i) First we consider the case when A[n, n] = 1. Assume that i is the last time that the path is

at vn−1, we have

F1(N) =

N−1∑
i=1

F 0
1 (i), F 0

1 (i) = number of length i paths from v1 to vn−1, f1 = f0
1 + 1,

ii) A[n, n] = 0. Now we have F1(N) = F 0
1 (N − 1), f1 = f0

1 .
We can process the graph forwardly, and denote f [i] the order of length i paths from v1 to vi.

Then if A[i, i] = 1, we let f [i] = f [i] + 1; if A[i, j] = 1, i < j, we let f [j] = max(f [j], f [i]).
Next let us consider the general case when G is an arbitrary directed graph. I used Tarjan’s

algorithm to calculate its strongly connected components and they form a new graph which is
acyclic. How to add edges on the new graph? There may be more than one paths between two
components, and a component may not have self-loop. Depth first search is used to sort the
components topologically. For each component, if it has more edges than vertices, then we think it
has more than one self-loops; if its edge number equals to its vertex number, we think it has exactly
one self-loop; otherwise we think it has no self-loop. The order of paths from vs to vt is the same
as the order of paths between their components. Moreover, if A[i, i] ≥ 2 in the components graph,
we let f [i] = +∞.

In a directed graph, accessibility from vertex A to vertex B is a partial order: 1) if A→ B,B →
C, then A → C; 2) A → A; 3) if A → B,B → A, then A ' B. The equality holds in the
sense of mutually accessible, that is, A,B are in the same strongly connected component. Mutually
accessible is an equivalence relation:

A ∼ A, A ∼ B ⇐⇒ B ∼ A, A ∼ B,B ∼ C,⇒ A ∼ C,
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Problem 53 (1697 Sniper Shot). Method 1: projection onto plane z = 0.
Method 2: projection onto the plane spanned by AB and ez.

Problem 54 (1716 Alternative Solution). Read in two integers N,S, let a = S − 2N , b = 3N − S,
output is 2ab+b

N .

Problem 55 (1747 Kingdom Inspection). Let the input integers be N,P , let n = N − 1, then

Ans =
n∑
i=0

(−1)n−i
(n+ i)!

2i

(
n

i

)
,

Problem 56 (1758 Bald Spot Revisited 2). Vertices are numbered from 1 to n, 2 ≤ n ≤ 50.
There exists an undirected edge between vertices i and j only if i|j or j|i. Find the longest path
such that each vertex are visited at most once. The path must start from vertex 1. Reference:
https://people.csail.mit.edu/virgi/6.s078/lecture17.pdf. The most significant speed improvement
follows Shen Yang’s idea in discussion. Shen Yang mentioned LKH heuristic, but I don’t know
what it is exactly.

Problem 57 (1763 Expert Flea). Calculate the number of Hamiltonian cycles in the circulant
graph C1,3

n . The answers an satisfy the following linear recurrence with k = 19:

an+k =
k∑
i=1

cian+k−i, n ≥ 2, [a2, a3, a4, a5, a6, ...] = [16, 2, 32, 24, 58, 46, 144, 110, 312, ...],

[c1, ..., ck] = [1, 2,−1, 1,−2,−1,−2,−3, 3,−1, 5, 2, 2, 1,−2, 0,−3, 0,−1],

Two methods can be used to determine the values of k and ci, 1 ≤ i ≤ k. One way is to use
reduction modulo a big prime, calculate determinants of size (k + 1) ∗ (k + 1) matrices and solve
linear systems as follows. The other is to solve linear system directly using numpy.

det

an+k ... an
...

an ... an−k

 = 0,

an+k−1 ... an
...

an ... an−k+1

c1

...
ck

 =

an+k

...
an+1

 ,

a6 = 58 takes into acount of duplicated edges and satisfies linear recurrence, its correct output should
be a′6 = 12. The values of a2, a3, a4, a5 have combinatorial explanations since we can construct
circulant graphs C1,3

2 , C1,3
3 , C1,3

4 , C1,3
5 explicitly.

Problem 58 (1768 Circular Strings). First we have to check the orientation of the polygon, if the
vertices are located in counter-clockwise order, then their order should be reversed. The criterion
is to check whether p[i+ 1]− p[i] = (p[i]− p[i− 1]).rotate(2π

N ) is satisfied for each i.

Problem 59 (1797 Summit Online Judge Version 2). Given x, y, l, r ∈ [1, 1018], l ≤ r, find the
number of integers that can be written in the form of ax + by, a, b ∈ N. First we assume that
gcd(x, y) = 1. It suffices to consider the case when r ≤ xy − x − y, since all the integers no less
than xy − x− y + 1 can be written in the above form.

f(r) = |{ax+ by ≤ r, a, b ≥ 0}|, f(r) =
∑

0≤a≤b r
x
c

(br − ax
y
c+ 1) =

∑
0≤b≤b r

y
c

(br − by
x
c+ 1),
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We may assume that x > y. If y = 1, the answer is calculated directly as∑
0≤a≤a0

((r − ax) + 1) = (r + 1)(a0 + 1)− a0(a0 + 1)x

2
,

Otherwise let x = uy + x1, 1 ≤ x1 ≤ y − 1, a0 = b rxc,

r − ax
y

=
r − a0uy + (a0 − a)uy − ax1

y
, r1 = r − a0uy, br − ax

y
c = br1 − ax1

y
c+ (a0 − a)u,

The above step can be regarded as a change of slope. Next let

br1 − a0x1

y
c = v, r1 = vy + r2, br1 − ax1

y
c = br2 − ax1

y
c+ v,

This step can be thought as a translation. We have∑
0≤a≤a0

(br − ax
y
c+ 1) =

∑
0≤a≤a0

(br1 − ax1

y
c+ 1 + (a0 − a)u) =

∑
0≤a≤a0

(br2 − ax1

y
c+ 1 + (a0 − a)u+ v)

=
(a0 + 1)a0u

2
+ v(a0 + 1) + a0 − a2 +

∑
0≤a≤a2

(br2 − ax1

y
c+ 1),

The last equality is because

0 ≤ r2 − a0x1 = r1 − vy − a0x1 ≤ y − 1, a2 = b r2

x1
c ≥ a0,

Problem 60 (1798 Fire Circle Version 2). Gauss circle problem.

Problem 61 (1807 Cartridges for Maxim). Reference: acm.timus.ru/forum/thread.aspx?id=25649.
Dynamic programming. Given a prime p, find integers a1, a2, ..., ak such that p =

∑k
i=1 ai and

lcm(a1, ..., ak) attains its maximum, k ≥ 2. p is the minimal prime divisor of n in problem statement.
State transition equation is

dp[0] = 0, dp[x] = −∞, x ≥ 1, dp[m] = max{dp[m], log pi + dp[m− pi]},

Notice that only the first M = 114 primes are used, so we can construct an m∗(p+1) array decision
to store all the decision points of the equation above.

Problem 62 (1810 Antiequations).

A : Fn3 → Fk3, Pi = {yi = bi} ⊂ Fk3, (y1, ..., yk) ∈ Fk3,

Assume that l = im(A),dim(l) = p. We consider the case when all Pi cross intersects l first, let
l ∩ Pi = Qi, then dim(Qi) = p − 1. It suffices to calculate the size of l\

⋃
1≤i≤kQi. For each pair

of i, j ∈ {1, ..., k}, there are three possible relations between Qi and Qj : 1) Qi = Qj identical, 2)
Qi ∩Qj = ∅ parallel, 3) dim(Qi ∩Qj) = p− 2 cross intersect.

Method 2: counting points on the affine variety X = Q1 ∪Q2... ∪Qk. Generally speaking, let

Nm = |X(Fqm)|, Z(X, t) = exp(
∑
m≥1

Nm

m
tm),
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For example, when p = k, Qi : yi = bi, we have

Nm = qmk − (qm − 1)k =

k−1∑
i=0

qmi
(
k

i

)
(−1)k+i+1,

∑
m≥1

Nm

m
tm =

k−1∑
i=0

(
k

i

)
(−1)k+i+1

∑
m≥1

qmi

m
tm =

k−1∑
i=0

(
k

i

)
(−1)k+i log(1− qit),

Z(X, t) = exp(

k−1∑
i=0

(
k

i

)
(−1)k+i log(1− qit)) =

(1− qk−2t)(
k
2)...

(1− qk−1t)(
k
1)(1− qk−3t)(

k
3)...

,

N1 =
dZ

dt

∣∣∣
t=0

=

(
k

1

)
qk−1 −

(
k

2

)
qk−2 +

(
k

3

)
qk−3... = qk − (q − 1)k,

Another special case is when bi = 0, each Pi is a codimension 1 subspace of Fk3. Claim: we may
select a basis s1, ..., sp of l such that their supports are pairwise disjoint.

Problem 63 (1812 The Island of Bad Luck 2). Given integers r1, r2, N, n,√
(r1 + r)2 − (r1 − r)2 +

√
(r2 + r)2 − (r2 − r)2 =

√
(r1 + r2)2 − (r1 − r2)2,

2
√
r1r + 2

√
r2r = 2

√
r1r2,

√
r =

√
r1r2√

r1 +
√
r2
,

1) n = 0 or n = 2N , output r1 or r2.
2) r1r2 is not a perfect square, output ”Irrational”.
3) gcd(r1, r2) = d, r1 = r′1d, r2 = r′2d, calculate r recursively. Dynamic programming is used to

store calculated values of rn in a table.

Problem 64 (1813 Random Shuffler). Wrote a python program to verify Lingxi Xie’s hint. The
answer for input M is b1+M+1−d

2 c where d is the calculated common difference of the arithmetic
sequence. Reference: acm.timus.ru/forum/?space=1&num=1813.

Problem 65 (1814 Continued Fraction). We need to implement quadratic extension of rational
number field as a struct QuadraticRT. An element’s inverse is given by

(
x+ y

√
N

z
)−1 =

z(y
√
N − x)

Ny2 − x2
,

nums[i] stores quadrtic rational ai + ri, where ai ∈ Z+, 0 < ri < 1, and
√
N = nums[0]. Formula

of continued fraction is given by nums[i+ 1] = 1
ri

. By the following theorem, we may check that if
the block length is m, then

nums[m+ 1] = nums[1], nums[m] = a0 + nums[0] = a0 +
√
N,

Method 1: assume that Rn = Pn
Qn

= [a0; a1, a2, ..., an] and 1 ≤ k1 ≤ m, k1 ≡ k mod m, then

Pn = Pn−1an + Pn−2, Qn = Qn−1an +Qn−2,

We start by calculating [ak1+1, ...ak]. Let P l = Plm, Q
l = Qlm, l = (k− k1)/m in this scenario, then(

P l

Ql

)
=

(
Pm Pm−1

Qm Qm−1

)(
P l−1

Ql−1

)
= M l

(
1
0

)
,
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Turning back to the original problem, we have

Pk = P lPk1 +QlPk1−1, Qk = P lQk1 +QlQk1−1,

Method 2: define P−1 = 1, Q−1 = 0, P−2 = 0, Q−2 = 1,

Ai =

(
ai 1
1 0

)
, M = AmAm−1...A1, prodm = Ak1 ...A1M

lA0,

Theorem 3. If r ∈ Q, r > 1 is not a perfect square, then

√
r = [a0; a1, a2, ..., a2, a1, 2a0],

It has a repeating block of lengthm, in which the firstm−1 partiail denominators form a palindromic

string. In the continued fraction expansion of P+
√
D

Q , the largest partial denominator ai in the

expansion of
√
D is less than 2

√
D, and the block length m = L(D) is less than 2D. A sharper

bound is
L(D) = O(

√
D logD),

Problem 66 (1815 Farm in San Andreas). Given coordinates of A,B,C, costs cA, cB, cC , find the
minimum of cAPA + cBPB + cCPC. If P is different from A,B,C, assume that α = ∠BPC, β =
∠CPA, γ = ∠APB, α1 = π − α, β1 = π − β, γ1 = π − γ, then

cB = cA cos γ1 + cC cosα1, cA = cC cosβ1 + cB cos γ1, cC = cB cosα1 + cA cosβ1,

α1, β1, γ1 are interior angles of the triangle coststri with edge lengths cA, cB, cC . Geometrically we
may construct point R (temppt in program) such that BC : CR : BR = cA : cB : cC . Intersection
of AR with the circumcircle of 4CBR is the point P required.

Problem 67 (1816 Troubles with Pollard).

Problem 68 (1840 Victim of Advertising). The trajectory of the skater is uniquely determined
since only one segment can be extended if there is no arc connecting two consecutive directed
segments without breaks. There are three constraints:

v ≤ 10m/s, atan ≤ 1m/s2, an ≤ 1m/s2,

My approach is to draw a v2

2 − s diagram, v2

2 is the kinetic energy.

atan =
dv2

2ds
≤ 1, an =

v2

R
≤ 1,

v2

2
≤ R

2
,

In this motion planning problem, the trajectory consists of N segments and N − 1 arcs, separated
by 2N endpoints. Assume that the kinetic energy and traveled length at the i-th endpoint are
kinetic[i] and s[i], then constraints are

|kinetic[i]−kinetic[i+1]| ≤ s[i+1]−s[i], kinetic[2i+1], kinetic[2i+2] ≤ min(
arcs[i].radius

2
, 50),

Notice that if solution 1 and 2 are legal, then their pointwise maximum is also legal. So we may
regard it as a linear programming problem that maximizes

∑
1≤i≤2N−1 kinetic[i]. We may solve this

problem in a way similar to Ford-Fulkerson algorithm by finding possible increments of kinetic[i] in
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every iteration. Condition that kinetic[i] can’t increase is that at least one of the three constraints
at endpoint i holds.

Thus we get kinetic[i] exactly from the greedy algorithm above. trapzoidtime() is used to
calculate for costed time in trapzoidal regions of the k − s diagram, and elapsedtime() calculates
costed time between two consecutive endpoints. I got memory limit exceeded sevaral times, possibly
because call elapsedtime() recursively. Changing parameter types from T to constant reference
doesn’t cost much memory when T is small.

Problem 69 (1845 Integer-valued Complex Determinant). Calculate the determinant of a Gaussian
integer valued matrix. Attention: my implementation of struct BigInteger is written in this program.
It is modified from Qifeng Chen’s implementation. Const qualifiers are used as improvements, and
BigNumber uses std::vector instead of array to store x.

Method 1: Integer coefficient Gaussian elimination. GaussianZT is implemented as Gaussian
integer struct. Use extended Euclidean algorithm to calculate GCD of Gaussian integers after
pivoting, so that all the elementary row transformations have Gaussian integer coefficients. A pro-
totype of it was implemented in IntegerElimination.cpp, in which I only tested on integer coefficient
matrices but not Gaussian integer. There are three kinds of elementary row transformations:

aj → aj − cai, aj → −aj , ai ↔ aj ,

and I try to turn akk into gcd(akk, aik) for i > k, aik 6= 0 after pivoting. Let u = akk, v = aik, the
output of extendedGCD function satisfies

xu+ yv = d, u = duq, v = dv1, xu1 + yv1 = 1, u1v − v1u = 0, |x| < |v1|, |y| < |u1|,

So we can take elementary row transform on the k, i-th rows resulting in

det

(
x y
−v1 u1

)
= 1,

(
x y
−v1 u1

)(
akk
aik

)
=

(
d
0

)
,

and it doesn’t change the determinant of A. Recursion of extendedeGCD satisfies

u%v = u− λv, d = yv + x(u%v) = xu+ (y − λx)v,

Note that generally speaking, we don’t need auxilliary matrices P,L that appears in PA = LU
while calculating determinant.

Method 2: GaussianQT is implemented as Gaussian rational struct. Use raw Gaussian elimi-
nation after pivoting, but the current result is RTE15 while using BigInteger struct, WA15 while
using long long.

Problem 70 (1950 Martian Farm). Bisect until F is on an altitude or the size of the new farmlands
is negligibly small. During every query, we know F is strictly inside isosceles right triangle ABC,
and we ask how much area of 4ABC is selected. Suppose D is the midpoint of AB, then exactly
one of the following two cases happens:

1) OF only intersects with one of the two smaller triangles;
2) OF intersects with both the two smaller triangles, then OF cross intersects CD.
It suffices to check if OF cross intersects CD, and judge if F is strictly inside 4ACD,4BCD

or on edge CD. Use long double to improve precision.

Problem 71 (1951 Complex Root). Given a = ax + iay, b = bx + iby and integers n,m, find the
number of complex solutions to xn = a, xm = b. Method is to use modified Euclidean algorithm to
find d = gcd(n,m) and xd.
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Problem 72 (1953 Biggest Inscribed Ellipse). It suffices to consider the case when the triangle Γ
is an equilateral Γ0 with edge length 2

√
3, hence its inscribed circle has radius 1.

Method 1: Calculate the transformation from Γ to Γ0. Assume the transformation matrix is A,
then the inscribed circle is

(x y)AtA

(
x
y

)
= 1, B = AtA, λ2 − tr(B)λ+ det(B) = 0,

λ1 < λ2, a2 =
1

λ1
, b2 =

1

λ2
, c2 =

1

λ1
− 1

λ2
,

Method 2: Calculate the transformation from Γ0 to Γ. Assume the transformation matrix is A,
a2, b2 satisfy the following equation:

B = tr(AAt), C = det(AAt), r2 −Br + C = 0,

I got WA-47 several times at first, trick to pass this testcase is to normalize the triangle perimeter
to 3 and multiply the scale to the answer before output.

Problem 73 (1973 Location Generator). Wrote a python program to estimate its value on a discrete
grid but later I found it unnecessary. One dimensional analogue: let b, c ∼ U([0, 1]), then

E|b− c| =
∫

[0,1]2
|b− c| = 1

3
,

Two dimensional case: 1) Given two disjoint triangles T1, T2 with a common point A = (0, 0).
B ∈ T1, C ∈ T2 satisfy uniform distributions and assume that AB ×AC ≥ 0, then

ES4ABC = E
AB ×AC

2
= E

xByC − xCyB
2

=
xByC − xCyB

2
,

2) B,C ∈ T1 are in the same triangle. Since the expectation varies bilinearly under plane affine
transformation, we may assume that P (1, 0), Q(0, 1), T1 = 4APQ. Let AB ∩ PQ = D, then

ES4ABC =

∫
T1

dB(
xByC,l − xC,lyB

2
xD +

−xByC,r + xC,ryB
2

yD),

xC,l =
xD
3
, yC,l =

1 + yD
3

, C ∈ T l1, xC,r =
1 + xD

3
, yC,r =

yD
3
, C ∈ T r1 ,

ES4ABC =

∫
T1

dB(
xB

1+yD
3 − xD

3 yB

2
xD +

−xB yD
3 + 1+xD

3 yB

2
yD) =

∫
T1

dB(
xB
6
xD +

yD
6
yD)

=

∫
[0,1]

dxD
x2
D + y2

D

9
=

∫ 1

0

2x2 − 2x+ 1

9
dx =

2

27
,

we used the fact that when D is the same, xB = 2xD
3 , yB = 2yD

3 .

Problem 74 (1975 Model of the Earth). Given n points on the unit sphere, calculate the number
of rotations that is a permutation of itself. Current status: WA-25. For any two different points
A,B, if A 6= −B, then there exists an unique rotation ϕAB : A 7→ (0, 0, 1), ϕ(B) ∈ Oxz. Finetune
around a solution candidate: assume that roll = α, pitch = β, yaw = γ, Rqi ∼ pi, R ∈ SO(3), 1 −γ β

γ 1 −α
−β α 1

 (q1, q2, ..., qn) ∼ (p1, p2, ..., pn),
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 0 qi.z −qi.y
−qi.z 0 qi.x
qi.y −qi.x 0

αβ
γ

 ∼
pi.x− qi.xpi.y − qi.y
pi.z − qi.z


Find least square solution to 3n linear equations in 3 variables α, β, γ.

Problem 75 (1983 Nectar Gathering). Calculate the area of ball triangle intersection in 3 dimen-
sional Euclidean space. Step 1: projection onto the triangle plane. Step 2: calculate the intersections
of the circle with each of the 3 triangle edges.

Problem 76 (1996 Cipher Message 3). Input: n is the size of image file in bytes, m is the size of
secret information in bytes. Let ai be the last bit of the i-th image, bj be the last bit of the j-th
information, ci be the first 7 bits of the i-th image, dj be the first 7 bits of the j-th information.
Wrote kmpmatcher() function to check all the occurences of d in c using KMP algorithm. Use FFT
and prefix sum to calculate el =

∑m−1
j=0 bj +aj+l−2bjaj+l, which is the distance between image and

shifted information.

Problem 77 (2038 Minimum Vertex Cover). Given a bipartite graph without duplicated edges. For
each vertex, determine whether it is contained in any minimum vertex cover of the graph. Claim:
let F be the maximum matching number, left and right partial derivatives ∂F

∂ci
of F can only have

three possibilities: (0, 0), (1, 0), (1, 1). Moreover, for a given maximum matching, sum of derivatives
at matched vertices always equals 2. Actually these partial derivatives can be calculated by running
depth first search on the residual network twice. My implementation based on Dinic maxflow got
TLE-25 or TLE-26. Wrote Hopcroft-Karp bipartite matching using cpp for the first time and got
accepted after using readint() instead of std::cin. Notice that Hopcroft-Karp algorithm uses breadth
first search and queue struct.

Problem 78 (2061 OEIS A216264). 1) Length n string has at most n different palindromic sub-
strings, in which case we say the string is rich.

2) If S is rich, c is a symbol, then Sc has at most one different palindromic substring, which is
the longest palindromic suffix of Sc.

3) Prefix of a rich string is rich. So all substrings of a rich string are rich.
To solve the original problem, we may first generate all the rich strings of length 60. Notice

that there are certain inclusion relations between palindromic strings: length n palindromic string
contains palindromic substrings of length n− 2, n− 4, ....

Problem 79 (2076 Vasiana).

(
x
y

)
=

(
a0 b0 c0

d0 e0 f0

)t2t
1

 ,

(
t2

t

)
=

(
a b c
d e f

)xy
1

 ,

1) x, y, 1 are linearly independent. The trajectory of (x, y) must be a parabola.

ax+ by + c = (dx+ ey + f)2, x′ =
dx+ ey√
d2 + e2

, y′ =
−ex+ dy√
d2 + e2

,

T =
1√

d2 + e2

(
d e
−e d

)
,

(
x
y

)
= T t

(
x′

y′

)
,

(
t2

t

)
=

(
a b c
d e f

)(
T t

1

)x′y′
1

 =

(
a′ b′ c
d′ 0 f

)x′y′
1

 , d′ =
√
d2 + e2,
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(d′x′ + f)2 = a′x′ + b′y′ + c, y′ = a′′(x′ − x′mid)2 + c′′,

x′mid =
−f + a′

2d′

d′
, a′′ =

d′2

b′
, c′′ =

f2 − c
b′

,

The equation for circle parabola intersection is

x2 + (y − y0)2 = R2, y = a′′x2 + c′′,

f(x2) = a′′2x4 + (2a′′(c′′ − y0) + 1)x2 + (c′′ − y0)2 −R2 = 0,

Criterion for existence of intersection is, f has non-negative real root.
2) x, y, 1 are linearly dependent. i) a0 = d0 = 0, a) b0 = e0 = 0, it means that the trajectory of

(x, y) is a single point. b) b0 6= 0 or e0 6= 0, it means that the trajectory of (x, y) is a full straight
line. ii)a0 6= 0 or d0 6= 0, now the trajectory of (x, y) is a ray.

Pcritical(xcritical, ycritical), x′ =
a0x+ d0y√
a2

0 + d2
0

, y′ =
−d0x+ a0y√

a2
0 + d2

0

,

Problem 80 (2083 The Guardian of Traditions). p : [n]→ [n] is a permutation, {qi}mi=1 is a integer
vector. Calculate

∑m
i=1 qip

i(j) for each 1 ≤ j ≤ n.
Fast Fourier Transform. Use std::llround to round a double variable to long long, use std::lround

to round a double variable to long. Naive multiplication algorithm gets TLE-9. Accepted algorithm
first calculates the loop decomposition of the permutation. Vector q is divided into 4 parts to improve
precision. Finally, length of vector q is aligned to the loop length before each FFT multiplication.

Problem 81 (2085 Magic Programmer). Find a path on a tree such that Ivan can try each of the
m technologies exactly once. Key idea is to use centroid decomposition. For a given root vertex,
all the paths from vi to vj can be classified into 2 classes: 1) paths that pass through the root
vertex; 2) paths that don’t pass through the root vertex, such a path must be totally contained in
a single subtree of the root vertex. So we may design an algorithm to solve the problem recursively
by carefully selecting the root vertex for each subtree. While processing a subtree, we only consider
paths that pass through the root vertex and paths whose length is at least 2. For each path, a tuple
(x1, x2, ..., xm) ∈ Zm is associated to it indicating that the path has xi copies of the i-th technology.
For any vertex v, tech(v) ∈ Zm with 0, 1 entries indicates the set of technologies associated to this
vertex. Notice that Zm is an additive abelian group. For a given subtree and a given root vertex, let
set(vi) =

∑
p∈path(vi,root)

tech(p). The condition that the path from vi to vj satisfies the requirement
is given by set(vi)+set(vj)− tech(root) = [m]. We only need to consider the case when xi = 0, 1 for
set(v) = (x1, x2, ..., xm) since if the path from vi to vj satisfies the requirement and pass through
root, then each technology appears at most once in set(vi) and set(vj).

Special case when the tree is a chain: suppose that the vertices are v1, v2, ..., vn and the edges
are (vi, vi+1), set(vi) =

∑i
j=1 tech(vj). Then the requirement is

set(vj)− set(vi) + tech(vi) = set(vj)− set(vi−1) = [m], i ≤ j,

We may scan the chain in order, save [m] + set(vi−1) in a dictionary, and query set(vj). Pre-
processing set(vi) takes linear time.

The second key point is to construct a hash function

ϕ : Zm → Z/moduloZ, (x1, x2, ..., xm) 7→
m∑
i=1

xip
i−1,
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where modulo is a prime and p is a primitive root in Z/moduloZ. It is an additive homomorphism.
I wrote primitivetest.py to calculate primitive roots modulo a prime P . It also calculates the
factorization of P − 1, and contains an implementation of linear sieve.

In order to test my code, I wrote a random tree generator. I wrote a function to count the
number of paths in the tree with any given length, and I wrote a checker program.

Reference: en.wikipedia.org/wiki/Prüfer sequence.

Problem 82 (2099 Space Invader). Four conditions:

AB · CD = 0, AB · (BC × CD) = 0, AB ·BC ≥ 0, CD ·BC ≥ 0,

Problem 83 (2117 Polyphemus’ triples).
√
A+
√
B =

√
C, A = a2D, B = b2D, C = c2D, D is square-free.

Then the answer is d c+1
2 e. Our goal is to calculate the square part c2 of C. Since 0 ≤ C ≤ 1018 < 260,

it suffices to calculate the list of primes up to 220. If the remaining integer n doesn’t have any prime
factor less than 220, and want to know its square part. 1) n = n2

0 and n0 is a prime. 2) n = n1, n1

is square-free and has at most 2 prime factors. 3) It is impossible that n = n2
0n1 where n0, n1 > 1,

n1 is square-free.

Problem 84 (2121 Intersection of parabolas). Find the area of the region bounded by the following
two parabolas: y = (x− a)2 and x = (y − a)2, 1 ≤ a ≤ 1018 is an integer.

The region is a curved quadrilateral, and we want to know the coordinates of its four vertices
Vi(xi, yi), 1 ≤ i ≤ 4. The coordinates of two vertices on the line x = y are the roots of x = (x− a)2,

x2 − (2a+ 1)x+ a2 = 0, x1 = y1 =
2a+ 1−

√
4a+ 1

2
, x2 = y2 =

2a+ 1 +
√

4a+ 1

2
,

So these two vertices are V1(x1, x1), V2(x2, x2). Using the substitution t = a− y, we have

t2 = x = (y − a)2, 0 = x2 − 2ax+ a2 − y = t4 − 2at2 + t+ a2 − a = P (t),

We’ve already know that its two roots are

t1 =
−1 +

√
4a+ 1

2
, t2 =

−1−
√

4a+ 1

2
, t21 = x1, t22 = x2,

Denote Q(t) = t4 − (2a+ 1)t2 + a2, we have the following factorization of P (t):

P (t)−Q(t) = t2 + t− a = (t− t1)(t− t2), P (t) = (t2 + t− a)(t2 − t− a+ 1),

So the remaining two roots of P (t) are

t3 =
1 +
√

4a− 3

2
, t4 =

1−
√

4a− 3

2
,

Their corresponding coordinates are

x3 = y4 =
2a− 1 +

√
4a− 3

2
, x4 = y3 =

2a− 1−
√

4a− 3

2
,

The desired area is

Area = (x3 − x1)2 + 2

∫ y1

y3

(x3 − (a− y)2)dy + 2

∫ x2

x3

(x− (a− x)2)dx = I + II + III,
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II

2
= (x3 − a2)(y1 − y3) + a(y2

1 − y2
3)− y3

1 − y3
3

3
,

III

2
= −a2(x2 − x3) + (a+

1

2
)(x2

2 − x2
3)− x3

2 − x3
3

3
,

Numerical results show that actually we have Area = 4a− 1
3 . Its rigorous proof through algebraic

computation is as follows:

x1, x2 satisfy: x2 − (2a+ 1)x+ a2 = 0,

x3, x4 satisfy: x2 − (2a− 1)x+ (a− 1)2 = 0,

II + III

2
= x3(x1−x4)+

x2
2 − x2

3

2
−a2(x1 +x2−x3−x4)+a(x2

1 +x2
2−x2

3−x2
4)− x

3
1 + x3

2 − x3
3 − x3

4

3
,

Let IV = x3(x1 − x4) +
x22−x23

2 , the remaining terms can be calculated through Vieta’s theorem.

x1 + x2 − x3 − x4 = 2a+ 1− (2a− 1) = 2,

x2
1 + x2

2 − x2
3 − x2

4 = (2a+ 1)2 − 2a2 − (2a− 1)2 + 2(a− 1)2 = 4a+ 2,

x3
1 + x3

2 − x3
3 − x3

4 = (2a+ 1)((2a+ 1)2 − 3a2)− (2a− 1)((2a− 1)2 − 3(a− 1)2) = 6a2 + 12a− 1,

II + III

2
= IV − 2a2 + a(4a+ 2)− 6a2 + 12a− 1

3
= IV − 2a+

1

3
,

Area = (x3 − x1)2 + 2 · IV − 4a+
2

3
= x2

1 + x2
2 − 2x3x4 − 4a+

2

3

= (2a+ 1)2 − 2a2 − 2(a− 1)2 − 4a+
2

3
= 4a− 1

3
,

Problem 85 (2126 Partition into teams). Method 1: raw search that iterates through all possi-
ble patterns, received TLE-3. Method 2: dynamic programming, dp[k] is the number of possible
states that countred − countblue = k after n steps, received TLE-7. Method 3: modelling as one
dimensional random walk, received TLE-12.

Answer =
1

2
(3N −

∑
a+2b=N

(
N

a, b, b

)
),

Method 4: making use of modulo P arithmetic. How to calculate
(
N
a,b,b

)
mod P?

(x+y+ z)P = xP +yP + zP , (x+y+ z)P
2

= xP
2

+yP
2

+ zP
2
, (x+y+ z)P

n
= xP

n
+yP

n
+ zP

n
,

N =

k∑
i=0

aiP
i, 0 ≤ ai ≤ P − 1, ak 6= 0,

(
N

a, b, b

)
mod P = coeff < xaybzb, (x+ y + z)N > mod P,

(x+ y + z)N =
k∏
i=0

(xP
i

+ yP
i

+ zP
i
)ai mod P,

30



∑
a+2b=N

(
N

a, b, b

)
= coeff < 1, (1 + x+ x−1)N >= coeff < 1,

k∏
i=0

(1 + xP
i

+ x−P
i
)ai >

=

k∏
i=0

coeff < 1, (1 + xP
i

+ x−P
i
)ai > mod P,

P−1∑
i=1

ik = 0 mod P, 1 ≤ k ≤ P − 2,

P−1∑
i=1

iP−1 = −1 mod P,

(1 + x+ x−1)k =

k∑
j=−k

cjx
j , (P − 1)c0 =

P−1∑
x=1

(1 + x+ x−1)k mod P, k < P − 1,

(P − 1)(1 + c0 + 1) =
P−1∑
x=1

(1 + x+ x−1)P−1 mod P,

So we may calculate c0 = coeff < 1, (1 + x + x−1)k > mod P in O(P log k) time. The range
N ≤ 1018 and 5 ≤ P < 106 implies that the base P expansion of N doesn’t have much digits, and
I got accepted using c++.

Problem 86 (2150 4B and Zoo). By the following theorem of Dirac, G has a Hamiltonian cycle
since d(v) ≥ dn2 e for each vertex v ∈ G. When n is even, this cycle gives an perfect matching as
desired.

Theorem 4 (Dirac, 1952). A simple graph with n ≥ 3 vertices contains a Hamiltonian cycle if
every vertex has degree n

2 or greater.

Problem 87 (2151 Mahjong). Split the tiles according their suits.

Problem 88 (2157 Skydiving). Dynamic programming. Raw implementation of the following
transfer equations received TLE-3. Its time complexity is O(n2).

time[i] = max{time[j] +

√
2(yj − yi)

g
}+ ci, pj → pi,

Answer = max{time[i] +

√
2yi
g
},

How to optimize our program? Notice that if Kirill can reach pj from pl, and reach pi from pj ,
then pl won’t be the decision point at pi since passing through pj must yields a longer duration of
falling. Also note that

1 Unsymmetric eigenvaluve problems

Theorem 5 (Gershgorin Circle Theorem). 1) If X−1AX = D + F , where D = diag(d1, ...dn) and
F has zero diagonal entries, then

σ(A) ⊂
n⋃
i=1

Di, Di = {z ∈ C, |z − di| ≤
n∑
j=1

|fij |},

2) If the Gershgorin disk Di is isolated from other disks, then it contains precisely one eigenvalue
of A.
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Proof. 1) Suppose that λ ∈ σ(A), λ 6= di, 1 ≤ i ≤ n, D − λI + F = X−1AX − λI is singular.

(D − λI)−1 = diag(
1

di − λ
), G = (D − λI)−1F = (

fij
di − λ

)1≤i,j≤n,

We are interested in the l∞ norm of operator G, which is defined as ‖G‖∞ = maxx 6=0
‖Gx‖∞
‖x‖∞ .

Suppose ‖x‖∞ = 1,

Gx = (
∑
j

gijxj)1≤i≤n, ‖Gx‖∞ ≤ max
i

∑
j

|gij | = max
i

∑
j

|fij |
|di − λ|

,

and the equality holds. On the other hand, if A+B is singular, A is non-singular, suppose (A+B)u =
0, u 6= 0, then

Au = −Bu, u = −A−1Bu, ‖A−1Bu‖p = ‖u‖p, ‖A−1B‖p ≥ 1,

Let A = D − λI,B = F, p =∞, we have 1 ≤
∑

j
|fkj |
|dk−λ| for some 1 ≤ k ≤ n,

|dk − λ| ≤
∑
j

|fkj |, λ ∈ Dk,

Another proof: assume λ ∈ σ(A) with eigenvector u ∈ Cn, k = arg maxj |uj |, then

|(dk − λ)uk| = | −
∑
j

fkjuj | ≤ |uk|
∑
j

|fkj |, |dk − λ| ≤
∑
j

|fkj | = rk,

2) If Dk ∩ Di = ∅, i 6= k, we show that there exist precisely one λ ∈ σ(A), λ ∈ Dk and λ has
multiplicity 1. i) Uniqueness: if λ ∈ Dk is an eigenvalue of D + F , u ∈ Cn is an eigenvector of
D − λI + F . If i = arg maxj |uj |, i 6= k then

(di − λ)ui = −
∑
j

fijuj , |(di − λ)ui| > ri|ui| ≥
∑
j

|fij ||uj |,

contradiction! So we have k = arg maxj |uj |, ‖u‖ = |uk|. Without loss of generality, assume that
k = n, D′n−1, F

′
n−1 ∈ Aut(Cn−1) are the first n− 1 rows and columns of D,F . Then for x ∈ Cn−1,

((D′ − λI ′)−1F ′x)i =

n−1∑
j=1

fijxj
di − λ

, |((D′ − λI ′)−1F ′x)i| ≤
n−1∑
j=1

|fij ||xj |
|di − λ|

< ‖x‖∞,

So ‖(D′ − λI ′)−1F ′‖∞ < 1, and we have the following expansion

(D′ − λI ′ + F ′)−1 = (D′ − λI ′)−1(I ′ + (D′ − λI ′)−1F ′)−1

(I ′ + (D′ − λI ′)−1F ′)−1 =
∑
m≥0

((λI ′ −D′)−1F ′)m,

The right hand side above is absolutely convergent, so D′ − λI ′ + F ′ is invertible. It follows that if
λ ∈ Dk is an eigenvalue of D + F , then it has multiplicity 1.

ii) Resolvent method:
R(λ) = (D − λI + F )−1 : Cn → Cn,
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As an operator valued function, R : C → Aut(Cn) is meromorphic in the following sense: for any
φ ∈ (Cn)∗, v ∈ Cn, f(φ, v, λ) = 〈φ,R(λ)v〉 is a meromorphic function of λ.

〈φ,R(λ1)v〉 − 〈φ,R(λ0)v〉 = 〈φ, (R(λ1)−R(λ0))v〉 = 〈φ, (λ1 − λ0)R(λ1)R(λ0)v〉,

R(λ1), R(λ0) are commutative: R(λ1)R(λ0) = R(λ0)R(λ1).

〈φ,R(λ1)v〉 − 〈φ,R(λ0)v〉
λ1 − λ0

= 〈φ,R(λ1)R(λ0)v〉

hence f(φ, v, λ) is meromorphic with df(φ,v,λ)
dλ = 〈φ,R(λ)2v〉.

λ singular ⇐⇒ ‖R(λ)‖ =∞, ‖R(λ)‖ = max
‖φ‖=‖v‖=1

|〈φ,R(λ)v〉|,

In finite dimensional case, D − λI + F : Cn → Cn induces an automorphism on
∧n(Cn):

e1 ∧ e2... ∧ en 7→
n∧
i=1

(D − λI + F )ei = det(D − λI + F )e1 ∧ e2... ∧ en,

iii) Consider the eigenvalues of D + εF, 0 ≤ ε ≤ 1, by 1), all of its eigenvalues lie in
⋃n
i=1 εDi.

These eigenvalues vary continuously with respect to ε, and we may denote them as λi(ε), 1 ≤ i ≤ n.
When ε = 0, we have λi(0) = di, so by continuity argument and the fact that Dk ∩Di = ∅, i 6= k,
we know that there is precisely one eigenvalue λk(ε) ∈ εDk. Take ε = 1 finishes the proof.

Theorem 6 (Bauer-Fike). If µ is an eigenvalue of A+E ∈ Cn∗n andX−1AX = D = diag(λq, ..., λn),
then

min
λ∈σ(A)

|λ− µ| ≤ κp(X)‖E‖p,

Proof. It suffices to consider the case µ /∈ σ(A). If the matrix X−1(A+E − µI)X is singular, then
so is I + (D − µI)−1X−1EX. Then we have

1 ≤ ‖(D − µI)−1X−1EX‖p ≤ ‖(D − µI)−1‖p‖X‖p‖E‖p‖X−1‖p,

Since‖(D − µI)−1‖p = maxλ∈σ(A)
1

|λ−µ| , we have finished our proof.

Definition 2. For square matrix A define the condition number κ(A) = ‖A‖‖A−1‖, with the
convention that κ(A) =∞ for singular A. κ(·) depends on the underlying norm and subscripts are
used accordingly.

κ2(A) = ‖A‖2‖A−1‖2 =
σmax(A)

σmin(A)
,

1

κp(A)
= min

A+∆A singular

‖∆A‖p
‖A‖p

,

κ(A) = lim
ε→0

sup
‖∆A‖≤ε‖A‖

‖(A+ ∆A)−1 −A−1‖
ε‖A−1‖

Theorem 7. Let QHAQ = D + N be a Schur decomposition of A ∈ Cn∗n, i.e., Q ∈ Cn∗n is
unitary, D = diag(λ1, ..., λn) and N ∈ Cn∗n is strictly upper diagonal. Q can be chosen so that
the eigenvalues λi appear in any order along the diagonal. If µ ∈ σ(A + E) and p is the smallest
positive integer such that Np = 0, then

min
λ∈σ(A)

|λ− µ| ≤ max{θ, θ
1
p }, θ = ‖E‖2

p−1∑
k=0

‖N‖k2,
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Extreme eigenvalue sensitivity for a matrix A cannot occur if A is normal. But A nonnormal
matrix can have a mixture of well-conditioned and ill-conditioned eigenvalues. Suppose that λ is a
simple eigenvalue of A ∈ Cn∗n and that x and y satisfy Ax = λx, yHA = λyH , ‖x‖2 = ‖y‖2 = 1. If
Y HAX = J is the Jordan decomposition with Y H = X−1, then y and x are nonzero multiples of
X(:, i), Y (:, i) for some i, so yHx 6= 0.

(A+ εF )x(ε) = λ(ε)x(ε), ‖F‖2 = 1,

We refer to the reciprocal of s(λ) = |yHx| as the condition of the eigenvalue λ. A small s(λ) implies
that A is near a matrix having a multiple eigenvalue. In particular, if λ is distinct and s(λ) < 1,
then there exists an E such that λ is a repeated eigenvalue of A+ E and

‖E‖2
‖A‖2

≤ s(λ)√
1− s(λ)2

,

In general, if λ is a defective eigenvalue of A, then O(ε) perturbations in A can result in O(ε
1
p )

perturbations in λ if λ is associated with a p-dimensional Jordan block.

2 Symmetric eigenvalue problems

Theorem 8 (Gershgorin). A is real symmetric, Q is orthogonal, ifQtAQ = D+F,D = diag(d1, d2, ..., dn)
and F has zero diagonal entries, then

σ(A) ⊂
n⋃
i=1

[di − ri, di + ri], ri =
∑
j

|fij |,

Proof. Exactly the same as the unsymmetric case, with an additional property that σ(A) ⊂ R.

Theorem 9 (Wielandt-Hoffman). If A and A+ E are n ∗ n symmetric matrices, then

n∑
i=1

(λi(A+ E)− λi(A))2 ≤ ‖E‖2F =

n∑
i,j=1

|eij |2

Theorem 10. If A and A+ E are n ∗ n symmetric matrices, then

λk(A) + λn(E) ≤ λk(A+ E) ≤ λk(A) + λ1(E), 1 ≤ k ≤ n,

|λk(A+ E)− λk(A)| ≤ ‖E‖2 = max{|λn(E)|, |λ1(E)|}, 1 ≤ k ≤ n,

Theorem 11 (Interlacing property). If A ∈ Rn∗n is symmetric and Ar = A(1 : r, 1 : r), then

λr+1(Ar+1) ≤ λr(Ar) ≤ λr(Ar+1) ≤ ... ≤ λ2(Ar+1) ≤ λ1(Ar) ≤ λ1(Ar+1), 1 ≤ r ≤ n− 1,

Theorem 12. Suppose B = A+ τcct, A ∈ Rn∗n, A = At, c ∈ Rn, ‖c‖2 = 1, τ ∈ R. we have

λi(B) ∈ [λi(A), λi−1(A)], 2 ≤ i ≤ n, when τ ≥ 0,

λi(B) ∈ [λi+1(A), λi(A)], 1 ≤ i ≤ n− 1, when τ < 0,

In either case, there exist m1,m2, ...,mn ≥ 0,m1 +m2 + ...+mn = 1 such that

λi(B) = λi(A) +miτ, 1 ≤ i ≤ n,
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Proposition 1. 1) If T = QR is the QR factorization of a symmetric tridiagonal matrix T ∈ Rn∗n,
then Q has lower bandwidth 1 and R has upper bandwidth 2 and it follows that T+ = RQ = QtTQ
is also symmetric and tridiagonal.

2) If s ∈ R and T − sI = QR is the QR factorization, then T+ = RQ + sI = QtTQ is also
tridiagonal. This is called a shifted QR step.

3) If T is unreduced, then the first n− 1 columns of T − sI are independent regardless of s.
4) If T ∈ Rn∗n is tridiagonal, then its QR factorization can be computed by applying a sequence

of n− 1 Givens rotations.

3 Solve univariate polynomial equations using SL2(R)

Assume that a degree 4 real coefficient polynomial P (x) = x4 + a3x
3 + a2x

2 + a1x+ a0 has no
real roots. Assume that its four roots are

x1, x1, x2, x2, x1, x2 ∈ H, =(x1) > 0,=(x2) > 0,

Assume that x1 = u1 + v1i, x2 = u2 + v2i. Half circle arc on the upper half plane which passes
x1, x2 and meets real axis orthogonally is uniquely determined. Assume its center is (u, 0), then

(u− u1)2 + v2
1 = (u− u2)2 + v2

2, u =
u2

2 + v2
2 − u2

1 − v2
1

2(u2 − u1)
,

Radius of the half circle arc is

r2
0 = (u− u1) + v2

1 =
(u2

2 − 2u1u2 + u2
1 + v2

2 − v2
1)2

4(u2 − u1)2
+ v2

1

=
((u2 − u1)2 + v2

2 − v2
1)2 + 4(u2 − u1)2v2

1

4(u2 − u1)2
=

(u2 − u1)4 + 2(u2 − u1)2(v2
2 + v2

1) + (v2
2 − v2

1)2

4(u2 − u1)2
,

The action SL2(R) y C is given by

x 7→ g(x) =
px+ q

rx+ s
, g =

(
p q
r s

)
∈ SL2(R),

Its kernel is ±id. We want to determine g such that

px1 + q

rx1 + s
= i,

px2 + q

rx2 + s
∈ R+i,

4 Sendov’s Conjecture

Conjecture 1 (Sendov’s Conjecture). For a polynomial f(z) = (z − r1)(z − r2)...(z − rn), n ≥ 2
with all roots r1, r2, ..., rn inside the closed unit disk {|z| ≤ 1}, each of the n roots is at a distance
no more than 1 from at least one root of f ′(z).

It suffices to show that for a fixed r1, the following distance function has maximum no more
than 1.

d(r2, ..., rn) = min |r1 − ξi|, f ′(z) = (z − ξ1)(z − ξ2)...(z − ξn−1),

Two near counter-examples are

f1(z) = zn − 1, r1 = e
2πi
n , f2(z) = zn − z, r1 = 0,

In the latter case the distance from 0 to any root of f ′2(z) is n−
1

n−1 = 1−O( logn
n ),
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