
1 综合练习-1

例 1.1. 数列 a1, a2, ... 定义为
∑
k|n

ak = 2n 对任意正整数 n 成立。求证：m | am。

证. 法一：称 n 位二进制数是循环的，如果对某个 d | n 它可以分成 d 段相同的块的话。任何 n 位二
进制数可以用把它的最长的不循环的开头的一段块重复书写而得到。由此，递推式计算的是不循环的 n

位二进制数的个数 an。从一个明显的事实，即一个不循环的 n 位二进制数可以通过平移得到 n 个不同
的不循环的 n 位二进制数，即可得到要证的结论。
法二：设 m 的素因数分解为 m = pα1

1 pα2
2 ...pαs

s , α1, α2, ..., αs ∈ Z+。由容斥原理，

am = 2m −
∑

1≤i≤s

2
m
pi +

∑
1≤i<j≤s

2
m

pipj − ...+ (−1)s2
m

p1p2...ps , 1⃝

我们证明对任意 1 ≤ i ≤ s，都有 pαi

i | am。
引理：设 k 为正整数，p 为素数，vp(k) = α ≥ 1，则 2k ≡ 2

k
p (mod pα) 2⃝。若 p ̸= 2，则由欧

拉定理，
φ(pα) = pα−1(p− 1), 2k−

k
p ≡ (2

k
pα )φ(pα) ≡ 1 (mod pα),

2⃝式成立。若 p = 2，则
k

2
≥ 2α−1 ≥ α，2k ≡ 2

k
2 ≡ 0 (mod 2α)， 2⃝式成立。

回到原题， 1⃝式右边的 2s 项可以配成 2s−1 对，每对形如 2k − 2
k
pi，由引理知 pαi

i | 1⃝式右边。
注：事实上，将本题中 2n 改为任意 tn (t ∈ Z)，结论都成立。法二实际上使用了莫比乌斯反演。

例 1.2. 证明：有无穷多组正整数 (a, b)，它们的每位均是 7, 8, 9，且 ab 的每位也是 7, 8, 9。

证. 设 m ≥ 4，a = 88...887, b = 99...98877 都为 m 位数，a 的前 m− 1 位均为 8，b 的前 m− 4 位均
为 9。则 ab = 8...878887...79899，左边的省略号中有 m− 4 个 8，右边的省略号中有 m− 4 个 7。

注：（1）笔者做这道题时写了 python 程序找到了这个规律。类似的合法构造还有很多。
（2）设 a, b满足每位均是 7, 8, 9，且 ab的每位也是 7, 8, 9。不一定存在 α, β ∈ {7, 8, 9}，使得 αa ·βb

每位是 7, 8, 9。

例 3

例 1.3. 无限棋盘上只为走横竖连珠的五子棋, 求必不败策略。
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证. 假设我是后手。将棋盘按图中所画的方式分成 2× 1 或 1× 2 的骨牌，每个骨牌上的两个方格配为
一对。不败策略为：只要先手下了任意一格，后手就下在与它配对的那格中。每个横竖方向上的五子连
珠必然包含一块骨牌，先手不可能都占据这块骨牌上的两格。

例 1.4. 设集合 S = {1, 2, ..., 17}，

A1, A2, ..., A68 ⊂ S, |Ai| = 5 (1 ≤ i ≤ 68), |Ai ∩Aj | ≤ 2 (1 ≤ i < j ≤ 68)

求证：（1）存在 M ⊂ S, |M | = 8，满足对任意 1 ≤ i ≤ 68 都有 M ∩Ai ̸= ∅；
（2）对任意 M ⊂ S, |M | = 7，存在 1 ≤ i ≤ 68 使得 Ai ∩M = ∅。

注：本题来源于组合数学中的 Steiner 系理论。具有参数 t, k, n 的 Steiner 系，记作 S(t, k, n)，是
指一个包含 n 个元素的集合 S，以及一组 S 的 k 元子集（称为块），其性质是 S 中每个 t 元子集恰好
包含在一个块中。本题中考察的就是 Steiner 系 S(3, 5, 17)。

S(3, 5, 17) 的一个具体的样例构造如下：S = {0, 1, 2, ..., 16}, {Ai,j}0≤i≤16, 0≤j≤3，

A0,0 = {0, 1, 2, 8, 11}, A0,1 = {0, 1, 3, 5, 6}, A0,2 = {0, 2, 6, 10, 12}, A0,3 = {0, 3, 4, 7, 12},

Ai,j = A0,j + i (mod 17), 1 ≤ i ≤ 16, 0 ≤ j ≤ 3,

引理 1.1. （1）不存在六个子集，使得它们有两个公共元素。否则不妨设它们为 Ai (1 ≤ i ≤ 6)，它们
的公共元素为 1, 2，则 Ai\{1, 2} (1 ≤ i ≤ 6) 两两不交，至少有 18 个元素，矛盾！
（2）没有元素出现在至少 21个子集中。否则不妨设 1 ∈ Ai (1 ≤ i ≤ 21)。⌈21 · 4

16
⌉ = 6，{2, 3, ..., 17}

中有一个元素在 Ai (1 ≤ i ≤ 21) 中至少出现了 6 次，不妨设它为 2，则 1, 2 是至少六个子集的公共元
素，由（1）得到矛盾！
（3）68 · 5

17
= 20，由（2）知 S 中每个元素都恰好出现在 20 个五元子集中。

（4）对任意元素，不妨设它为 1，设它恰出现在 A1, A2, ..., A20 中。由（1）知 {2, 3, ..., 17} 中每
个元素在 Ai (1 ≤ i ≤ 20) 中至多出现了五次，又因为

20 · 4
16

= 5，所以 {2, 3, ..., 17} 中每个元素在
Ai (1 ≤ i ≤ 20) 中恰出现了五次。也就是说，每两个元素恰出现在五个五元子集中。

（5）S中共有
(
17

3

)
= 680个三元组，每个三元组至多出现在一个五元子集中。又因为 68·

(
5

3

)
= 680，

所以每个三元组恰出现在一个五元子集中，即 S 构成 Steiner 系 S(3, 5, 17)。
（6）对任意 a ∈ S，包含 a 的 20 个五元子集除去 a 之后构成 Steiner 系 S(2, 4, 16)。

证.（1）由引理（3），不妨设 1 恰出现在 A1, A2, ..., A20 中。由引理（4），设 {1, 2} 为 Ai (1 ≤ i ≤ 5) 的
公共元素。不妨设

A1 = {1, 2, 3, 4, 5}, 2 ∈ A1, A2, A3, A4, A5, 3 ∈ A1, A6, A7, A8, A9,

4 ∈ A1, A10, A11, A12, A13, 5 ∈ A1, A14, A15, A16, A17, A2 = {1, 2, 6, 7, 8},

A3 = {1, 2, 9, 10, 11}, A4 = {1, 2, 12, 13, 14}, A5 = {1, 2, 15, 16, 17},

A6 除 1, 3 外的三个元素必然落在 {6, 7, 8}, {9, 10, 11}, {12, 13, 14}, {15, 16, 17} 中的三个集合中，每个
集合各有一个元素。类似地，A7, A8, A9 除 1, 3 外的三个元素也落在上述四个集合中的三个，每个集合
各有一个元素。
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例 4-1

法二：对任意 1 ≤ i ≤ 68，设 Ci = {S\Ai的 8 元子集}。考察 C1, C2, ..., C68，证明它们的并不是 S

的所有 8 元子集。由容斥原理，

|
68∪
i=1

Ci| ≤
68∑
i=1

|Ci| −
∑

1≤i<j≤68

|Ci ∩ Cj |+
∑

1≤i<j<k≤68

|Ci ∩ Cj ∩ Ck|, 1⃝

对任意 1 ≤ i < j ≤ 68，

Ci ∩ Cj = {S\Ai的 8 元子集} ∩ {S\Aj的 8 元子集} = {S\Ai\Aj的 8 元子集},

因为 |A1 ∩A2| ≥ 8，所以 |S\A1\A2| ≤ 9。

有几对 (i, j) (1 ≤ i < j ≤ 68) 使得 |Ai ∪Aj | = 8？算两次知有
(
17

2

)(
5

2

)
= 1360 对。

有几对 (i, j) (1 ≤ i < j ≤ 68) 使得 |Ai ∪ Aj | = 9？由下表知有三个 i 满足 A1 ∩ Ai = {1}，于是有
3 · 5 = 15 个 i 满足 |A1 ∩Ai| = 1。有

68 · 15
2

= 510 对 (i, j) (1 ≤ i < j ≤ 68) 使得 |Ai ∪Aj | = 9。
对任意 1 ≤ i < j < k ≤ 68，|Ai ∪ Aj ∪ Ak| ≥ 9。等号成立时必有 |Ai ∩ Aj | = |Aj ∩ Ak| =

|Ak ∩Ai| = 2，对每对 (i, j) (1 ≤ i ≤ j ≤ 68)，这样的 k 至多有三个。于是至多有
(
17

2

)(
5

2

)
· 3
3
= 1360
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例 4-2

例 4-3

组 (i, j, k) (1 ≤ i < j < k ≤ 68) 使得 |Ai ∪Aj ∪Ak| = 9。

1⃝式右边 ≤ 68 ·
(
12

8

)
− 1360 · 9− 510 · 1 + 1360 = 22270 < 24310 =

(
17

8

)
,

所以 S 必有 8 元子集不在
68∪
i=1

Ci 中，令它是 M 即符合题意。

（2）假设存在 S 的七元子集 M 使得 M ∩Ai ̸= ∅ 对任意 1 ≤ i ≤ 68 成立，不妨设 1, 2 /∈ M，因为
M ∩Ai ̸= ∅, 1 ≤ i ≤ 5，所以可不妨设 3, 6, 9, 12, 15 ∈ M。
（i）M 的另两个元素在同一个 Ai (1 ≤ i ≤ 5) 中，不妨设它们是 4, 5，
（ii）M 的另两个元素在两个不同的 Ai (1 ≤ i ≤ 5) 中，不妨设它们是 4, 7。
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例 4-4

例 4-5

未完待续。

例 1.5 (2001，IMO). 有 21 男 21 女参加一次数学竞赛，每人至多做出 6 题，且对每对男女均有至少
一题都被他们解决。求证：必有一题被至少三男三女解决。

证. 假设对于每一对男女组合，至少有一个问题是他们共同解决的。假设每个问题要么由最多两个男孩
解决，要么由最多两名女孩解决。我们将证明，有参赛者解决了超过六个问题。创建一个 21×21 的网
格，以男生为列，女生为行，并在每个单元格中写下两人解决的一个问题的名称。如果最多只有两个女
孩解决了这个问题，请将单元格涂成绿色，如果最多只有两个男孩解决了那个问题，就把它涂成蓝色。
对于男孩来说。某些单元格可能同时使用了这两种颜色。不妨设绿色单元格的总数多于蓝色单元格。由
抽屉原理，存在一列男孩使得这列至少有 11 个绿色方格。由反证假设，它们对应于至少 6 个已解决的
问题。现在有两种情况：（1）如果存在任何仅由蓝色构成的方格，那么该方格对应这列的第七个不同的
问题，矛盾！（2）如果整列都是绿色的，那么这列中至少有 11 个不同的问题，矛盾！

例 1.6. 设集合 A ⊂ Z+, |A| = n。证明：存在 B ⊂ A，满足 |B| > n

3
，且对任意 u, v ∈ B，都有
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u+ v /∈ B。

证. 这是 Erdös于 1965年证明的一个经典结论。下面的证明来自 1990年 Noga Alon和 Daniel Kleitman
的论文”Sum-free subsets”。
设 A = {a1, a2, ..., an} 是 n 个正整数的集合。令 p = 3k + 2 是一个素数，满足 p > 2 max

1≤i≤n
ai，并

设 C = {k + 1, k + 2, ..., 2k + 1}。C 是模 p 的整数环 Z/pZ 中的无和子集，并且
|C|
p− 1

=
k + 1

3k + 1
>

1

3
。

对任意整数 x (1 ≤ x ≤ p− 1)，定义 d(x, 1), ..., d(x, n) 为

d(x, i) ≡ xai (mod p), 1 ≤ d(x, i) ≤ p− 1,

构造 (p− 1)× n 的方格表，第 x 行 i 列填入 d(x, i)。对于每个固定的 i (1 ≤ i ≤ n)，x 的取遍所有数
字 1, 2, ..., p− 1 时，d(x, i) 能取遍所有数字 1, 2, ..., p− 1。因此

Pr[d(x, i) ∈ C] =
|C|
p− 1

>
1

3
,

所以方格表中 d(x, i) ∈ C 的元素数量大于总数的
1

3
。于是存在一个 x (1 ≤ x ≤ p − 1) 和大小为

|B| > 1

3
|A| 的 A 的子集 B，使得 xb (mod p) ∈ C 对所有 b ∈ B 成立。这个 B 是无和的，因为如果对

于某些 b1, b2, b3 ∈ B，b1 + b2 = b3，那么 xb1 + xb2 ≡ xb3 (mod p)，这与 C 是 Z/pZ 的无和子集的事
实矛盾！
注：（1）选取素数 p 时实际上使用了狄利克雷大定理的特殊情形：对任意正整数 a, d，(a, d) = 1，

等差数列 {a+ nd}n≥0 中有无穷多个素数。

（2）|B| > n

3
右边的常数

1

3
是最优的。

例 1.7. p 是奇质数，求 F =

p−1∏
k=1

(1 + k + k2) 除以 p 的余数。

证.（1）p = 3 时，F ≡ 0 (mod 3)，所求余数为 0。
（2）p ≡ 1 (mod 3) 时，由二次互反律，(

−3

p
) = (−1)

p−1
2 (

3

p
) = (−1)

p−1
2 · (−1)

p−1
2 (

p

3
) = 1，−3 是模

p 的二次剩余。于是存在 0 ≤ k ≤ p− 1，使得 4(k2 + k+1) = (2k+1)2 +3 ≡ 0 (mod p)，且 k ̸= 0。于
是 p | k2 + k + 1, F ≡ 0 (mod p)，所求余数为 0。
（3）p ≡ 2 (mod 3) 时，法一：设 f(x) ≡ x(x − 1)...(x − p + 1) ≡ xp − x (mod p)，ω, ω 是方程

x2 + x+ 1 ≡ 0 (mod p) 的两根，则 ω3 ≡ ω3 ≡ 1, ω2 ≡ ω, ω2 ≡ ω (mod p)。

F ≡
p−1∏
k=0

[(k − ω)(k − ω)] ≡ f(ω)f(ω) ≡ (ωp − ω)(ωp − ω)

≡ (ω − ω)(ω − ω) ≡ 2ωω − ω2 − ω2 ≡ 3 (mod p),

所求余数为 3。
法二：F ≡ 3 ·

∏
0≤k≤p−1,

k ̸=1

k3 − 1

k − 1
(mod p)。因为 (3, p− 1) = 1，所以 {k3}0≤k≤p−1 恰好是模 p 的一个
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完系，
∏

0≤k≤p−1,
k ̸=1

(k3 − 1) ≡
∏

0≤k≤p−1,
k ̸=1

(k − 1) ̸≡ 0 (mod p)。于是 F ≡ 3 (mod p)，所求余数为 3。

例 1.8. A ̸= B, A,B ⊂ Z+，S, T 是可重集。

S = {u+ v | u < v, u, v ∈ A}, T = {u+ v | u < v, u, v ∈ B}, S = T,

求证：|A| = |B| = 2m。

证. 这是一个来自 Erdös 和 John Selfridge 的结果。也就是说，|A| 不是二的幂时，A 由它的二元无序
和多重集唯一确定。我们使用母函数法：设 f(x) =

∑
j∈A

xj , g(x) =
∑
j∈B

xj，则题设条件等价于 f ̸= g，

f(x)2 − f(x2) = g(x)2 − g(x2), 即f(x)2 − g(x)2 = f(x2)− g(x2), 1⃝

设 |A| = |B| = n，则 f(1) = g(1) = n, |S| = |T | = n(n− 1)

2
。设 h(x) = f(x)− g(x)，则

1⃝式⇐⇒ [f(x) + g(x)]h(x) = h(x2), 2⃝

因为 h(1) = 0，所以可以设 h(x) = (x− 1)kp(x)，其中 k ≥ 1, p(1) ̸= 0。于是 h(x2) = (x2 − 1)kp(x2)，

[f(x) + g(x)](x− 1)kp(x) = (x2 − 1)kp(x2) = (x− 1)k(x+ 1)kp(x2),

[f(x) + g(x)]p(x) = (x+ 1)kp(x2),

上式中代入 x = 1，得到 [f(1) + g(1)]p(1) = (1 + 1)kp(1)。于是 2n = 2k，n = 2k−1。
注：（1）事实上，本题条件可放松为 A,B ⊂ R 且元素可以重复，此时结论依然成立。
（2）|A| = |B| = 2m 时可以构造使得 S = T 的例子，如 A = {2, 3, 6, 9}, B = {1, 4, 7, 8}, S = T =

{5, 8, 9, 11, 12, 15}。
参考文献：www.cut-the-knot.org/Curriculum/Combinatorics/CombiGem.shtml

例 1.9. 设 x, y > 0, x+ y = 1，正整数 m,n ≥ 2。求证：(1− xm)n + (1− yn)m > 1 1⃝。

证. 设 z = 1 − yn，n = 1 时，z = x，(1 − xm)n = 1 − zm 恒成立。我们对 n 归纳，证明 n ≥ 2

时，(1− xm)n > 1− zm 2⃝。n = 1 时， 2⃝式为恒等式。n ≥ 2 时，设 w = 1− yn−1，由归纳假设，
(1− xm)n−1 ≥ 1− wm。只需证明 (1− xm)(1− wm) > 1− zm，即 zm − wm > xm(1− wm) 3⃝。

z − w = yn−1 − yn = xyn−1, zm − wm = xyn−1(zm−1 + zm−2w + ...+ wm−1),

1− w = yn−1, xm(1− wm) = xmyn−1(1 + w + ...+ wm−1),

因为 z = 1 − yn > 1− y = x，所以 zm−1 > xm−1, zm−2w > xm−1w, ..., wm−1 > xm−1wm−1， 3⃝式成
立。由归纳法知 1⃝式对任意 n ≥ 2 成立。

例 1.10. 设 n 是大于 1 的整数, 记 ξk = cos 2kπ
n

+ i sin 2kπ

n
, k = 1, 2, ..., n − 1。试求下式的最简表示：∏

1≤j<k≤n−1

(ξj − ξk)
2。
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解. 设 ω = e 2πi
n ，则 ξk = ωk, 1 ≤ k ≤ n− 1。设 f(x) =

n−1∏
j=1

(x− ωj) = 1 + x+ ...+ xn−1，则

f ′(x) =
n−1∑
j=1

∏
1≤k≤n−1,

k ̸=j

(x− ωk), f ′(ωj) =
∏

1≤k≤n−1,
k ̸=j

(ωj − ωk),

f ′(ω)f ′(ω2)...f ′(ωn−1) =
n−1∏
j=1

∏
1≤k≤n−1,

k ̸=j

(ωj − ωk) = (−1)
n(n−1)

2

∏
1≤j<k≤n−1

(ξj − ξk)
2, 1⃝

另一边，(x− 1)f(x) = xn − 1, f(x) + (x− 1)f ′(x) = nxn−1, f ′(x) =
nxn−1 − f(x)

x− 1
,

对任意 1 ≤ j ≤ n− 1，f ′(ωj) =
nω(n−1)j

ωj − 1
=

n

ωj(ωj − 1)
, 又因为ω

n(n−1)
2 = e 2πi

n ·n(n−1)
2

= e(n−1)πi = (−1)n−1, 所以 1⃝式左边 =
n−1∏
j=1

n

ωj(ωj − 1)
=

nn−1

ω
n(n−1)

2 (−1)n−1f(1)
= nn−2,

原式 = (−1)
n(n−1)

2 · 1⃝式左边 = (−1)⌊
n
2 ⌋nn−2。

例 1.11. 给定正整数 r, s, t 满足 1 < r < s < t。设 n 个正实数 x1, x2, ..., xn 满足条件

xj

xj+1

≤ 1 +
t− s

j + s
, j = 1, 2, ..., n− 1,

对所有这样的 n 个正实数，试求
∑n

k=1 k(k + 1)...(k + t− 1)xk∑n
k=1(k + r)(k + r + 1)...(k + t− 1)xk

的最小值。

证. 对任意 1 ≤ j ≤ n − 1，有 (j + s)xj ≤ (j + t)xj+1，于是 (j + s)(j + s + 1)...(j + t − 1)xj ≤
(j + s+ 1)...(j + t− 1)(j + t)xj+1。设 yj = (j + s)(j + s+ 1)...(j + t− 1)xj , 1 ≤ j ≤ n，则原条件等价
于 y1 ≤ y2 ≤ ... ≤ yn。我们证明 y1 = y2 = ... = yn 时原式取最小值。

原式 =

∑n
k=1 k(k + 1)...(k + s− 1)yk∑n

k=1(k + r)(k + r + 1)...(k + s− 1)yk
,

1 ≤ k ≤ n 时，设 ck = k(k + 1)...(k + s− 1), dk = (k + r)(k + r + 1)...(k + s− 1)，则

ck
dk

= k(k + 1)...(k + r − 1),
c1
d1

≤ c2
d2

≤ ... ≤ cn
dn

,

我们证明原式 =

∑n
k=1 ckyk∑n
k=1 dkyk

≥
∑n

k=1 ck∑n
k=1 dk

1⃝。作阿贝尔变换，

n∑
k=1

ckyk = (c1 + c2 + ...+ cn)y1 + (c2 + ...+ cn)(y2 − y1) + ...+ cn(yn − yn−1), 2⃝

n∑
k=1

dkyk = (d1 + d2 + ...+ dn)y1 + (d2 + ...+ dn)(y2 − y1) + ...+ dn(yn − yn−1), 3⃝

因为对任意1 ≤ j ≤ n, cj + ...+ cn ≥
∑n

k=1 ck∑n
k=1 dk

(dj + ..+ dn),
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所以 2⃝式右边 ≥
∑n

k=1 ck∑n
k=1 dk

· 3⃝式右边， 1⃝式成立。y1 = y2 = ... = yn 时，

原式 =

∑n
k=1 k(k + 1)...(k + s− 1)∑n

k=1(k + r)(k + r + 1)...(k + s− 1)
,

分子 = s!
n∑

k=1

(
k + s− 1

s

)
= s!

(
n+ s

s+ 1

)
=

(n+ s)!

(n− 1)!(s+ 1)
,

分母 = (s− r)!
n∑

k=1

(
k + s− 1

s− r

)
= (s− r)![

(
n+ s

s− r + 1

)
−
(

s

s− r + 1

)
]

=
(n+ s)!

(n+ r − 1)!(s− r + 1)
− s!

(r − 1)!(s− r + 1)
,

于是原式最小值为
(n+ s)!(s− r + 1)

(n− 1)!(s+ 1)

/
[

(n+ s)!

(n+ r − 1)!
− s!

(r − 1)!
]，好像不能继续化简了。

注：事实上，条件可放松为 1 ≤ r ≤ s ≤ t。
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2 组合问题-1

例 2.1. 香蕉共和国的居民语言中，单词的数目多于其字母表中字母的数目．证明：存在正整数 k，使
得可以找出 k 个不同的单词，他们的拼写中刚好用到了 k 个不同的字母。

证. 法一：构造二分图，左边顶点为单词，右边顶点为字母，若某单词含有某字母则在它们之间连一条
边。设左边 n 个顶点，右边 m 个顶点度为正，n > m。左边每个顶点度至少为 1，设右边有 l 个度为 1
的顶点，与它们相邻的左边顶点至多有 l 个，l ≤ m < n。于是可从左边找到一个顶点不与这 l 个度为
1 的右边顶点相邻，从图中去掉这个顶点和与它相邻的边，会使左边顶点数减少，右边度为正的顶点数
不变。重复上述操作，直至 n = m。
法二：假设结论不成立，

例 2.2. 方格平面中将一些方格染红色，设任意一 2× 3 矩形块中的红色方格都不多于 3 个。求证：全
平面可以分割为 1× 2 的块，使得每块中的红色方格都不多于 1 个。

证. 调整法。初始时将方格平面分成形如 (2x, y), (2x+1, y) 的横着的 1× 2 的块。若存在某块有两个红
色方格，则它上面两格和下面两格中总共至多有一个红色格，上下必有一侧有两个空白格。将这块两个
红色方格与上下一侧的两个空白格调整为两个竖着的 1× 2 的块。还需说明这样调整不会发生冲突。

例 2.3. 一支卫队共有 169 人，每天 4 人执勤。是否可能若干天内任意两个人恰有一次同一天执勤？

分析：回忆 Steiner系 S(t, k, n)的定义，是指一个包含 n个元素的集合 S，以及一组 S 的 k 元子集（称
为块），满足 S 中每个 t 元子集恰好包含在一个块中。也就是说，本题希望找到 Steiner 系 S(2, 4, 169)

的一个构造。我们先尝试构造 S(2, 4, 13)。

证. 设 S = {0, 1, 2, ..., 12}，A0 = {0, 1, 3, 9}，则 A0 中两两元素之差在模 13 的意义下正好取遍
{1, 2, 3, 4, 5, 6}。对任意 1 ≤ i ≤ 12，令 Ai = A0+ i (mod 13)，则 {Ai}0≤i≤12 组成 Steiner系 S(2, 4, 13)。
然后考虑构造 Steiner 系 S(2, 4, 169)。设 F13 = Z/13Z 是 13 元有限域，我们可以将 169 个人视为

仿射平面 F2
13 的点 (i, j) (i, j ∈ F13)。仿射平面 F2

13 上过每个点都有 14 条仿射直线，共有 13 · 14 = 182

条不同的仿射直线，每条仿射直线上都有 13 个点。按上述方法在每条仿射直线上找出 13 个四元子集
构成 Steiner 系 S(2, 4, 13)，在所有仿射直线上共找出 182 · 13 = 2366 个四元子集。因为过仿射平面上
两点有且仅有一条仿射直线，所以每两个人恰好在一个四元子集中同时出现。
思考题：试构造 Steiner系 S(2, 5, 21)。设 S = {0, 1, 2, ..., 20}，A0 = {0, 1, 4, 14, 16}，则 A0 中两两元

素之差在模 21的意义下正好取遍 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}。对任意 1 ≤ i ≤ 20，令 Ai = A0+i (mod 21)，
则 {Ai}0≤i≤20 组成 Steiner 系 S(2, 5, 21)。

例 2.4. 晚会上来了 100 人。然后，在与会者中没有熟人的人都离开了晚会，接着，在剩下的人中恰有
一个熟人的人都离开了晚会。再接着，在剩下的人中恰有 2, 3, 4, ..., 99 个熟人的人依次全都离开了晚会。
试问最后最多可有多少人留下？

证. 最多留下 98 人。构造如下：100 个人中除了 u, v 不认识，其余任意两人都互相认识，即从完全图
K100 中删一条边。

例 2.5. 设正整数 n ≥ 2，正整数 m ≥ 2n−1 + 1。证明：S = {1, 2, ..., n} 的任意 m 个不同的非空子集
Aj (1 ≤ j ≤ m)，都存在互不相同的 i, j, k，使得 Ai ∪Aj = Ak。
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证. 对 n 作归纳。n = 2 时，{1, 2} 恰有三个非空子集 {1}, {2}, {1, 2}，其中一个是另两个的并。n ≥ 3

时，假设命题对 n− 1 成立。
（i）若在 Ai (1 ≤ i ≤ m) 中存在 {n}，不妨设 Am = {n}。S 的其余非空子集可以配成 2n−1 − 1 对，

每对形如 (B,B ∪ {n}), B ⊂ {1, 2, ..., n− 1}, B ̸= ∅。由抽屉原理，Ai (1 ≤ i ≤ 2n−1) 中必有两个落在
同一抽屉中，不妨设它们为 A1, A2, A2 = A1 ∪ {n} = A1 ∪Am，命题成立。
（ii）若在 Ai (1 ≤ i ≤ m) 中不存在 {n}，可将 Ai (1 ≤ i ≤ m) 分成两部分，一部分包含 n，另一

部分不包含 n，必有一部分有至少 m′ = ⌈m
2
⌉ ≥ 2n−2 + 1 个子集，不妨设它们为 A1, A2, ..., Am′。设

Bi = Ai\{n} (1 ≤ i ≤ m′)，则 Bi ⊂ {1, 2, ..., n − 1}, Bi ̸= ∅。由归纳假设知存在互不相同的 i, j, k 使
得 Bi ∪Bj = Bk，于是 Ai ∪Aj = Ak，命题成立。
综上，由归纳法知命题对任意 n ≥ 2 成立。

例 2.6. 10×10 的棋盘中每个方格放有一枚棋子，每次操作可以选择一条平行于对角线且上面放有偶数
枚棋子的直线，取走其中的任一枚棋子。最多能取走多少个棋子？

证. 最多取走 90个棋子。称平行于对角线的直线为合法直线，称包含奇数枚棋子的合法直线为奇线，每
次操作会使奇线条数单调不减。初始时有 20 条奇线，结束时也至少有 20 条这样的直线。因为每条奇
线上至少一枚棋子，每枚棋子至多在两条奇线上，所以结束时至少有 10 枚棋子。
寻找等号成立的构造时，需要注意每一次拿走的棋子一定在奇线与偶线的交叉处。

例 2.7. 从集合 1,2,3,...,2009 中选取 k 对数组 ai, bi，（其中 ai < bi）使得没有两对数组有公共的元素．
假设所有的和 ai + bi 都互不相同且都不超过 2009，求 k 的最大值。

证. 我们有下列不等式：

1 + 2 + ...+ 2k ≤
k∑

i=1

ai +
k∑

i=1

bi =
k∑

i=1

(ai + bi) ≤ 2009 + 2008 + ...+ 2009− k + 1,

于是 k(2k + 1) ≤ k(4019− k)

2
，解得 k ≤ 803。k = 803 时构造如下：

(ai, bi) = (1606, 403), (1604, 404), ..., (806, 803), (1605, 3), (1603, 4), ..., (807, 402), (805, 2), (804, 1)。

例 2.8. 在一个存在故障的由 25 盏灯构成的 5×5 的方阵中，按动其中一盏灯的开关，该灯及其所在行
与列的所有与之相邻的灯的状态都将改变（或由熄灭变为开启，或由开启变为熄灭）。开始时，所有灯
都是熄灭的，在按动若干次开关后，恰有一盏灯是开启的．试求这盏开启的灯的所有可能的位置．
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证. 按前两张图中所示方式染色，则每次操作只改变偶数个染成蓝色的格子。初始时蓝色格子没有灯亮，
结束时不可能只剩下一盏灯亮。于是这盏开启的灯只可能位于 (2, 2), (2, 4), (4, 2), (4, 4), (3, 3)。后两张图
分别给出了开启的灯位于 (3, 3) 和 (2, 4) 时的操作方式，按任意顺序按下蓝色格子的开关即可。

例 2.9. 设 P 是一个凸 n边形，在 P 的内部不相交的任意 n−3条对角线构成的集合将 P 分割成 n−2

个三角形。如果 P 是正 n 边形，且存在 P 的一个分割，使得分割出的三角形都是等腰三角形（含正三
角形），求 n 的所有可能值。

证. 三角剖分后考察圆心位置知至多有一个锐角三角形，此时圆心必在它的内部。其余三角形都是直
角或钝角三角形，顶角必为直角或钝角。于是可取内部或边界包含圆心的一个锐角或钝角三角形，它
的顶点将圆周分为三部分，每部分各有 2a, 2a, 2b 段小圆弧，a, b ≥ 0。总共有 2a+1 + 2b 段小圆弧，
n = 2a+1 + 2b, a, b ≥ 0。

例 2.10. 平面上任意作出 2n + 1 条直线。求证：三边都在这些直线上的锐角三角形的个数不多于
n(n+ 1)(2n+ 1)

6
。

证. 给定一条直线 li (1 ≤ i ≤ 2n + 1)，设与它成锐角的直线有 αi 条，则与它成直角或钝角的直线有
2n− αi 条。设有 A 个直角或钝角三角形，B 个锐角三角形。考察一条边与两个锐角相邻的结构，若这
条边在直线 li 上，则有 αi(2n− αi) 个这样的结构。于是我们有：

A+B =

(
2n+ 1

3

)
, A+ 3B =

2n+1∑
i=1

αi(2n− αi) ≤ (2n+ 1)n2,

2B ≤ (2n+ 1)n2 −
(
2n+ 1

3

)
= n(2n+ 1)(n− 2n− 1

3
) =

n(n+ 1)(2n+ 1)

3
,

于是 B ≤ n(n+ 1)(2n+ 1)

6
。

例 2.11. 对任一正整数可在它的十进制记法中插入加号计算和数（例如对 1234567可得 1234+5+67=1306），
对于和数可以继续进行操作。求证：每个数都可经不多于 10 步操作变为一位数。

证. 设原来的正整数为 n = amam−1...a1a0，bk = amam−1...ak+1ak + ak−1 + ... + a0。只要 am−1, ..., a0

不全为 0，首位数字必在某一时刻发生进位。假设 amam−1...ak+1ak + ak−1 + ... + a0 首位不进位，
amam−1...ak+1 + ak + ...+ a0 首位进位，于是 amam−1...ak+1ak + 10(ak + ak−1 + ...+ a0) 首位进位。我
们宣称：ak−1, ..., a0 可以适当地合并成两位数或三位数，使得插入加号后首位数字进位，且和比恰好进
位多了不到 999。
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例 2.12. 求作一个 1990 边形，它的各内角相等，各边长分别为 12, 22, ..., 19902。事实上，本题中 1990
可以改为任意 n = 2pq，p, q ≥ 3 为互质的正奇数。

证. 1990 = 2 · 5 · 199。先作一个 995 边形，它的各内角相等，各边长分别为 1, 2, ..., 995。设 p = 5, q =

199, ω = e 2πi
pq 为 pq 次单位根。我们构造 1, 2, ..., pq 的一个排列 a0, a1, ..., apq−1，使得

a0 + a1ω + ...+ apq−1ω
pq−1 = 0, 1⃝

设 g(ω) = 1 + 2ωq + ...+ pω(p−1)q，因为 ωq 为 p 次单位根，所以 1 + ωq + ...+ ω(p−1)q = 0，

g(ω) = (p+ 1) + (p+ 2)ωq + ...+ 2pω(p−1)q = ...

= [(q − 1)p+ 1] + [(q − 1)p+ 2]ωq + ...+ qpω(p−1)q,

又因为 ωp 为 q 次单位根，所以 1 + ωp + ...+ ω(q−1)p = 0，

0 = [1 + ωp + ...+ ω(q−1)p]g(ω) = 1 + 2ωq + ...+ pω(p−1)q

+ωp[(p+ 1) + (p+ 2)ωq + ...+ 2pω(p−1)q] + ...

+ω(q−1)p{[(q − 1)p+ 1] + [(q − 1)p+ 2]ωq + ...+ qpω(p−1)q},

上式右边展开后每项中 ω 的幂次为 {kp+ lq | 0 ≤ k ≤ q − 1, 0 ≤ l ≤ p− 1}，其中任意两个不同的幂次
k1p+ l1q, k2p+ l2q 都满足

(k1 − k2)p ̸≡ (l2 − l1)q (mod pq), 即k1p+ l1q ̸≡ k2p+ l2q (mod pq),

所以这些幂次恰好组成一个模 pq 的完全剩余系， 1⃝式得证。
回到原题，由以上论述，可以作一个 995边形，它的各内角相等，各边长分别为 4k−1 (1 ≤ k ≤ 995)。

对任意 1 ≤ k ≤ 995，将长为 4k − 1 的边换成长为 (2k − 1)2, (2k)2，且方向相反的一对边，知原命题成
立。
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3 组合问题-2

例 3.1. 给定正整数 n 和 M > 2 · (3
2
)n 个 n 元 0, 1, 2 序列。求证：存在三个序列，它们的每一项中都

有至少两个数是相同的。

证. 设 M 个 n 元序列为 {ai,j}1≤i≤M, 1≤j≤n。n = 1 时，M > 3, M ≥ 4，必有两个一元序列相同，不妨
设 a1,1 = a2,1，则序列 {a1,1}, {a2,1}, {a3,1} 满足每一项中至少两个数相同，命题成立。n ≥ 2 时，假设
已经证明命题对 1, 2, ..., n− 1 成立，设在 {ai,1}Mi=1 种有 c0 个 0，c1 个 1，c2 个 2。不妨设 c0 ≥ c1 ≥ c2，

则 c0+ c1 ≥ ⌈2M
3

⌉ ≥ 2M

3
> 2 · (3

2
)n−1，有归纳假设，首项为 0或 1的序列中能取出三个，它们后 n− 1

项种每一项至少两个数相同。因为它们首项为 0 或 1，也满足至少两个数相同，所以命题对 n 成立。由
归纳法知命题对任意正整数 n 成立。

例 3.2. 平面上有 n(n ≥ 3) 个点，任意三点不共线，求证：可以将它们分别标为 P1, P2, ..., Pn，使得对
任意 i ∈ {1, 2, ..., n− 2}，∠PiPi+1Pi+2 是锐角。

证. 任取 P1。假设已经取好了 P1, P2, ..., Pi，1 ≤ i ≤ n− 1，则令 Pi+1 为其余 n− i 个点中距离 Pi 最
远的点。假设存在 ∠PiPi+1Pi+2 是钝角，则 PiPi+2 > PiPi+1，矛盾！

例 3.3. 平面上有 n 个点，对任意两点，我们在它们连的边上写下 ⌊log2 d⌋，这里 d 是这两点之间的距
离。求证：我们写下的不同整数不超过 2n− 2 个。

证. 假设写下的不同整数有至少 2n − 1 个，则这些整数中必有 n 个同奇偶，它们对应了 n 条写有
这些数的边。因为顶点数为 n，所以 n 条边中必有若干条组成一个圈。设圈长为 l，圈的顶点依次为
A1, A2, ..., Al。1 ≤ i ≤ l− 1 时，设 AiAi+1 上写的数为 di，AlA1 上写的数为 dl，{di}1≤i≤l 奇偶性相同，
且是 l 个不同整数。不妨设 dl 最大，则 2dl ≤ AlA1 < 2dl+1。1 ≤ i ≤ l − 1 时，2di ≤ AiAi+1 < 2di+1，
所以

l−1∑
i=1

AiAi+1 <
l−1∑
i=1

2di+1 < 2dl−1 + 2dl−3 + 2dl−5 + ... < 2dl ≤ AlA1,

这与 AlA1 ≤
l−1∑
i=1

AiAi+1 矛盾！于是写下的不同整数至多 2n− 2 个。

注：（1）本题中可将 ⌊log2 d⌋ 改为 ⌊logϕ d⌋, ϕ =
1 +

√
5

2
。因为 ϕdl−1 + ϕdl−3 + ϕdl−5 + ... =

ϕdl−1 · 1

1− ϕ−2
= ϕdl，所以原结论依然成立。

（2）题中平面上的点可以推广到在任意度量空间中的点。

例 3.4. 设 n 是一个正整数，有 S = {0, 1, ..., 2n− 1} 的 2n 个非空子集（可能相同），它们的元素个数
之和为 n(2n+ 1)。求证：可以从每个子集中选出一个数，使得选出的所有数之和恰为 n(2n− 1)。

引理 3.1. 设非空实数集 A = {a1 < a2 < ... < ak}, B = {b1 < b2 < ... < bl}，则

a1 + b1 < a1 + b2 < ... < a1 + bl < a2 + bl < ... < ak + bl,

是 A+B = {a+ b | a ∈ A, b ∈ B} 中的 k + l − 1 个不同的元素，于是 |A+B| ≥ k + l − 1。

14



证. 设 Ai ⊂ S, 1 ≤ i ≤ 2n, |Ai| = ai ≥ 1，于是
2n∑
i=1

ai = n(2n+ 1)。考虑

B = {x1 + x2 + ...+ xn | xi ∈ Ai, 1 ≤ i ≤ n},

C = {n(2n− 1)− xn+1 − xn+2 − ...− x2n | xi ∈ Ai, n+ 1 ≤ i ≤ 2n},

设 D = {0, 1, ..., n(2n−1)}，因为 0 ≤
n∑

i=1

xi ≤ n(2n−1)，所以 B ⊂ D。同理，0 ≤ n(2n−1)−
2n∑

i=n+1

xi ≤

n(2n− 1)，于是 C ⊂ D。由引理，

|B| = |A1 +A2 + ...+An| ≥ |A1 +A2 + ...+An−1|+ |An| − 1 ≥ ...

≥ |A1|+ |A2|+ ...+ |An| − n+ 1 = a1 + a2 + ...+ an − n+ 1,

同理，|C| = |An+1 +An+2 + ...+A2n| ≥ an+1 + an+2 + ...+ a2n − n+ 1,

于是 |B|+ |C| ≥
2n∑
i=1

ai − 2n+ 2 = n(2n+ 1)− 2n+ 2 = n(2n− 1) + 2 > |D|。这说明 B ∩ C ̸= ∅，存

在 xi ∈ Ai (1 ≤ i ≤ 2n) 使得
2n∑
i=1

xi = n(2n− 1)。

注：对 1 ≤ i ≤ 2n，设 Ai = {yi,1 < yi,2 < ... < yi,ai
}，我们可以从小到大列举出 B = A1+A2+...+An

中的
n∑

i=1

ai − n + 1 个不同元素。共 n 行，1 ≤ k ≤ n 时，第 k 行为 {y1,a1
+ ... + yk−1,ak−1

+ yk,j +

yk+1,1 + ...+ yn,1, j = 1, 2, ..., ak}。其中 1 ≤ k ≤ n− 1 时，第 k 行末尾的数与第 k + 1 行开头的数相

等，除此之外列举的数互不相同且单调增。所以 |B| ≥
n∑

i=1

ai − n+ 1。

例 3.5. 对图 G，定义图 G’ 如下，其顶点与 G 的顶点相同，而两个顶点 u, v 之间有连边，当且仅当
u, v 在 G 中有公共邻居。假设某图 G 与 (G′)′ 同构，求证：G 与 G′ 同构。

证. 对每个 k ≥ 3，考察 G 中的每个 k 阶完全子图，

例 3.6. 一个 13× 13 的方格表的每个方格里有一个整数，求证：我们可以选择 2 行 4 列，使得它们交
叉处的 8 个方格内的数之和是 8 的倍数。

引理 3.2. （1）三个整数中必有两个数同奇偶，它们的和为偶数。
（2）七个整数中必有四个数和为四的倍数，证明如下：由（1），可先取出两数 a1, a2，它们和为偶

数；再从剩余五个数中取出两数 a3, a4，它们和为偶数；最后从剩余三个数中取出两数 a5, a6，它们和
为偶数。a1 + a2, a3 + a4, a5 + a6 三数模 4 余 0 或 2，其中必有两数模 4 余数相同，它们的和被四整除。
该引理是 Erdös-Ginzburg-Ziv 定理的特殊情形。

证. 将每两行看作一个抽屉，共
(
13

2

)
= 78 个抽屉。同一列的两个数如果和为偶数，将它们看作一个

苹果放入对应行的抽屉中。设第 i 列有 αi 个偶数，13− αi 个奇数，则它们之间有(
αi

2

)
+

(
13− αi

2

)
≥

(
6

2

)
+

(
7

2

)
= 36, 1⃝

15



对数和为偶数，即这列有至少 36 个苹果，等号成立当且仅当 αi = 6, 7。方格表的 13 列中总共有至少
13 · 36 = 6 · 78 个苹果。
（1）存在一个抽屉有至少 7 个苹果，即存在两行七列使得每列两数之和均为偶数。此时由引理，必

能取出四列使得这两行四列和为 8 的倍数。
（2）每个抽屉恰有 6 个苹果，此时对每个 1 ≤ i ≤ 13， 1⃝式等号都成立，αi = 6, 7。我们证明这是

不可能的。考察前三行，它们在每列对应了三个数，其中和为偶数的两数对只能有 1 个或 3 个。于是
方格表的 13 列中总共有奇数个苹果属于前三行中的两行（它们组成三个抽屉），这与这三个抽屉各有 6
个苹果矛盾！
注：（1）笔者曾尝试将每四列看作一个抽屉，将同一行和为 4 的倍数的四元组看作一个苹果。设某

行 13 个数中模 4 余 0,1,2,3 的各有 a, b, c, d 个，因为

4 = 0 + 0 + 0 + 0 = 1 + 1 + 1 + 1 = 2 + 2 + 2 + 2 = 3 + 3 + 3 + 3

= 0 + 0 + 1 + 3 = 1 + 1 + 2 + 0 = 2 + 2 + 3 + 1 = 3 + 3 + 0 + 2

= 0 + 0 + 2 + 2 = 1 + 1 + 3 + 3,

且 a+ b+ c+ d = 13，所以和为 4 的倍数的四元组数为(
a

4

)
+

(
b

4

)
+

(
c

4

)
+

(
d

4

)
+

(
a

2

)
bd+

(
b

2

)
ca+

(
c

2

)
db+

(
d

2

)
ac+

(
a

2

)(
c

2

)
+

(
b

2

)(
d

2

)
≥ 50,

当且仅当 (a, b, c, d) = (7, 6, 0, 0)及其置换时上式等号成立。假设方格表有 29行，则抽屉总数为
(
13

4

)
=

715，苹果总数至少有 29 · 50 = 1450 个，必有一个抽屉有至少 ⌈1450
715

⌉ = 3 个苹果。这三个四元组和都
为 4 的倍数，由引理知必有两个四元组和为 8 的倍数。
（2）是否存在 13× 12 或 12× 13 的方格表，使得其中没有两行四列和为 8 的倍数？

例 3.7. 圆周上有 101 枚硬币，每枚硬币的质量都是 10 克或者 11 克。求证：（1）存在一个硬币，其顺
时针接下来的 50 枚硬币质量之和等于其逆时针接下来 50 枚硬币质量之和；（2）存在一个硬币，其顺
时针接下来的 49 枚硬币质量之和等于其逆时针接下来 49 枚硬币质量之和。

证.（1）将每段连续的 50 枚硬币视为一个顶点，并给顶点标上这 50 枚硬币质量之和。两段硬币之间若
恰好隔了一枚硬币，则在两个顶点之间连一条边。我们宣称这个图一定是一个长为 101 的圈。对任意顶
点，与它相邻的两个顶点分别对应了圆周上的 50 枚硬币，其中公共部分有 49 枚硬币，于是这两段硬
币的质量之和相差不超过 1。假设图上任意两个相邻顶点上标的数不同，则必有连续三个顶点，中间顶
点标的数在左右顶点标的数之间，于是左右顶点标的数之差至少为 2，矛盾！
（2）将每段连续的 49 枚硬币视为一个顶点，两段硬币之间若恰好隔了一枚硬币，则在两个顶点之

间连一条边。这个图一定是一个长为 101 的圈。对任意顶点，与它相邻的两个顶点分别对应了圆周上的
49 枚硬币，其中公共部分有 48 枚硬币，于是这两段硬币的质量之和相差不超过 1。后续论述与（1）问
类似。

例 3.8. 正整数数列 a1, a2, a3, ... 被称为巴西数列，如果 a1 = 1，而 an 是大于 an−1，且至少与
a1, a2, ..., an−1 中一半的数互素的最小正整数。是否有不在巴西数列中的正奇数？
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引理 3.3. lim
n→∞

∏
p为质数,
p≤n

(1− 1

p
) = 0。这是因为对任意正整数 n ≥ 2，有

∏
p为质数,
p≤n

1

1− 1
p

=
∏

p为质数,
p≤n

(1 +
1

p
+

1

p2
+ ...) =

∑
m的质因数不超过n

1

m
>

n∑
m=1

1

m
> ln(n+ 1),

于是存在奇素数 P 使得
∏

p为质数,
3≤p≤P

(1− 1

p
) <

1

4
。

证. 假设所有正奇数都在巴西数列中。考察 M = 3 · 5 · 7 · ... · P，其中 P 由引理给出。设 an = M，则
1, 3, ...,M − 2 和 2 必然都在 {ai}1≤i≤n−1 中，n− 1 ≥ M + 1

2
。另一边，1, 2, ...,M − 1 中与 M 互素的

数的个数为
φ(M) = M ·

∏
p为质数,
3≤p≤P

(1− 1

p
) <

M

4
,

又因为 1 ≤ ai ≤ M − 1 (1 ≤ i ≤ n− 1)，所以 {ai}1≤i≤n−1 中与 M 互素的数的个数 <
M

4
<

M + 1

4
≤

n− 1

2
，M 不在巴西数列中，矛盾！

注：（1）python 程序告诉我使得 φ(m)

m
<

1

4
的最小的正奇数 m 为 M = 3 · 5 · 7 · ... · 79。上述证明

实际上告诉我们至少有一个不超过 M 的正奇数不在巴西数列中。
（2）能否对第一个不在巴西数列中的正奇数的大小作更精确的估计？

例 3.9 (2021，中国数学奥林匹克). 设 n(n ≥ 3) 位科学家参加会议，每位科学家都有一些朋友参会（朋
友关系是相互的，且每个人不是自己的朋友）。已知无论怎样将这些科学家分成非空的两组，总存在同
组的两位科学家是朋友，也存在不同组的两位科学家是朋友。第一天，会议提出了一项议题，每位科学
家对此议题的赞成度可用一个非负整数表示。从第二天起的每一天，每位科学家的赞成度变成其所有朋
友前一天的赞成度的平均数的整数部分。求证：经过若干天之后，所有科学家的赞成度都相等。

证. 将科学家视为顶点，两个科学家若是朋友则连一条边，得到一个无向图 G。（1）G 不是二分图，于
是图中存在一个奇圈。（2）G 是连通图。

例 3.10. 在一棵树的每个顶点处都有一些芯片，在每一轮操作中，如果一个顶点的芯片数不少于它的
邻居数，那么这个顶点给它每个邻居 1 个芯片（所有顶点一起操作）。求证：每个顶点的芯片数量构成
的状态是最终周期的，且周期为 1 或 2。

引理 3.4. 设 G = (V,E) 为一个图，则题中所述的发送芯片过程满足：
（1）若 x̄k = 0̄，则对任意 i ∈ V 有 x̄i = 0̄；若 x̄k = 1̄，则对任意 i ∈ V 有 x̄i = 1̄。在这两种情况

下，极限环是一个不动点（即周期 T = 1）。
（2）若 [s− k, s] ⊂ supp(x̄i) 是一个极大集，则存在 j ∈ Vi 使得 [s− k − 1, s− 1] ⊂ supp(x̄j)。
（3）若 [s− k, s] ⊂ (supp(x̄i))

c，则存在 j ∈ Vi 使得 [s− k − 1, s− 1] ⊂ (supp(x̄j))
c。
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例 10-1

例 10-2

证. 注：（1）本题的背景是组合数学中著名的 chip firing game。它的一般情形是给定一个连通无向图，
每个顶点处有一些芯片，每步可以选定一个芯片数大于等于度数的顶点，向每个相邻顶点发送一个芯
片。本题中每个顶点同时发送芯片，被称为该游戏的并行模式，即 parallel chip firing game。
（2）最终周期为 1 或 2 的例子如上图。去掉题中图是一棵树的条件不能得到最终周期为 1 或 2 的

结论，例子如上图。
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例 10-3

参考文献：（1）https://www.dam.brown.edu/people/cklivans/Chip-Firing.pdf。文中讲述了该游戏
与许多深刻数学的关系，例如图的拉普拉斯矩阵，图的除子，图的 Riemann-Roch 定理等。
（2）https://www.sciencedirect.com/science/article/pii/0304397592903168。1991年 Bitar和 Goles

研究 parallel chip firing game 的原始论文。
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4 组合问题-3

例 4.1. 有一条虫子，它的整个身体由 n 节构成，每一节要么是有瑕疵的 1，要么是没有瑕疵的 0，因
而整个虫子的身体结构就可以用一个 n 位 01 串来表示。你的目标是把整个虫子变成 000...00 的完美形
式。每一次，你可以砍掉虫子最右侧的一节，同时虫子会在最左侧长出新的一节，以保持虫子的总长度
不变。如果你砍掉的是一个 1，那么你可以指定虫子在最左侧长出的是 1 还是 0；但如果你砍掉的是一
个 0，那么你无法控制虫子会在最左侧长出什么——它可能会长出 0，也可能会长出 1，因而你不得不
假定，概率总是会和你做对，上天会竭尽全力地阻挠你。我们的问题是：不管虫子的初始状态是什么，
你总能保证在有限步之内让虫子变成 000...00 吗？

解. 把 n 次操作称为一次大操作。一次大操作中，只要上天一直将 0 变为 0，我就把 1 变为 0，n 步之
内虫子会全变为 0。否则一定存在某次操作上天把 1 个 0 变为 1，然后我把这次大操作中后面遇到的每
个 1 变为 1。将一条虫子从左到右视为二进制数，则一次大操作后数变大，最后必能全变为 1。一些例
子如下：

00100 → 10010 → x1001 → 1x100 → x1x10 → xx1x1,

00010 → 10001 → 11000 → x1100 → xx110 → xxx11,

11010 → 11101 → 11110 → x1111 → 1x111 → 11x11,

11010 → 01101 → 00110 → 10011 → 11001 → 11100,

例 4.2. 是否存在无穷多个正整数对 (m,n)，使得 m < n，m 和 n 用到的质因数完全相同，并且 m+ 1

和 n+ 1 用到的质因数也完全相同？

解. 存在。m = 2k − 2 = 2(2k−1 − 1), n = 22k − 2k+1 = 2k+1(2k−1 − 1)，则 m + 1 = 2k − 1, n + 1 =

(2k − 1)2。

例 4.3. 设 n 为正整数。求证：将 n 分成若干个正奇数之和与把 n 分成若干个互不相同的正整数之和
（都不考虑数的顺序）方法一样多。

证. 法一：设 n =
m∑
i=1

aiti, 2 ∤ ai，将 ti 用二进制展开，得到的数互不相同，所以能建立一一映射。

法二：设 podd(n) 为将 n 拆分成若干奇数之和（顺序无关）的方法数。qdist(n) 为将 n 拆分成若干
互不相同的正整数之和的方法数。要证明：podd(n) = qdist(n)。计算拆分一的方法数时，每个奇数 2k− 1

可以用任意次，所以其母函数为：
1

1− x2k−1
。于是

P (x) =
∑
n≥0

podd(n)x
n =

∞∏
k=1

1

1− x2k−1
,

计算拆分二的方法数时，每个正整数 k 最多用一次，所以其母函数为：(1 + xk)。于是

Q(x) =
∑
n≥0

qdist(n)x
n =

∞∏
k=1

(1 + xk) =
∞∏
k=1

1− x2k

1− xk
,
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所以 Q(x) = P (x)。比较 xn 项系数得：podd(n) = qdist(n)。
注：类似地，将正整数 n 分成若干个不被 3 整除的数之和与把 n 分成若干个至多重复出现两次的

正整数之和（都不考虑数的顺序）方法一样多。例如，

7 = 7 = 2 + 5 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 1 + 1 + 4 = 1 + 2 + 2 + 2 = 1 + 1 + 1 + 2 + 2

= 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 1, 共 9 种方法写成正奇数的和，

7 = 7 = 1 + 6 = 2 + 5 = 3 + 4 = 1 + 1 + 5 = 1 + 2 + 4 = 1 + 3 + 3 = 2 + 2 + 3 = 1 + 1 + 2 + 3,

也有 9 种方法写成至多重复出现两次的正整数的和。

例 4.4. 圆周上有 4n 个点，交错的染上红色和蓝色，把 2n 个红点两两配对连出 n 条红色线段，类似
的连出 n 对蓝色线段，求证：至少存在 n 对线段，每对一条红色与一条蓝色，并且相交。

证. 调整法。若两条蓝色线段相交，将它们调为不交，红蓝线段相交数不增，蓝蓝线段相交数严格减小。
重复上述调整直到没有两条蓝色线段相交，此时每条蓝线段一侧有奇数个红点，必与一条红线段相交。
注：本题中恰有 n 对红蓝线段相交的构造很多。能具体求出这样的构造有多少种么？

例 4.5. N 个学校各派出若干名男女选手参加一次比赛，同校选手不比赛，不同校任两名选手都恰好进
行一场比赛。同性别选手比赛称为“单打”，不同性别选手比赛称为“混打”。现知男女选手人数最多相
差 1，“单打”与“混打”也最多相差 1，求证：最多有 3 个学校有奇数名选手。

证. 设每个学校男选手 bi 人，女选手 gi 人，di = bi − gi。1 ≤ i ≤ k 时，di ̸= 0，k + 1 ≤ i ≤ N 时，

di = 0。我们有 |
k∑

i=1

di| ≤ 1，

1 ≥ |
∑

1≤i<j≤N

(bibj + gigj − bigj − bjgi)| = |
∑

1≤i<j≤N

didj | = |
∑

1≤i<j≤k

didj |

=
1

2
|(

k∑
i=1

di)
2 −

k∑
i=1

d2i | ≥
1

2
(

k∑
i=1

d2i − |
k∑

i=1

di|2) ≥
k − 1

2
,

所以 k ≤ 3。

例 4.6. 有无穷多个白色盒子，依次标号为 1, 2, 3, 4, ...，另有一个黑色盒子，现在有 n 个球放入若干个
白色盒子中，并进行如下操作：如果 k 号白色盒子恰有 k 个球，则将这 k 个球分别放入 1, 2, 3, 4, ..., k−1

号白色盒子和黑色盒子中，每盒一个球。求证：存在唯一的一种放球方式，使得在若干次操作后，可以
把 n 个球全部放入黑盒中。

证. k + 1 个球经过一次操作必变为 k 个球，k 个球状态中左数第一个空盒子原先必有球。

例 4.7. 集合 {1, 2, 3, ..., 2n+1} 有一批子集，这批子集满足任意两个子集相交，它们的交或者只有一个
元素，或者是连续若干元素，那么这批子集最多有多少个？

解. (n + 1)2。先证明这 n 个子集均可调为连续的，保留最大元，最小元，中间补全，得到的子集必然
互不相同，他们均包含一个公共元素。
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例 4.8. 平面上有 n 个点，任意三点不共线，其中连有 m 条线段，求证：三角形至少有
m

3n
(4m − n2)

个。

证. 设顶点为 A1, A2, ..., An，度数分别为 d1, d2, ..., dn。若 AiAj 之间有边，则以此为边有至少 (di−1)+

(dj − 1)− (n− 2) = di + dj − n 个三角形。于是

3 ·三角形总数 ≥
∑

AiAj相邻

(di + dj − n) =
n∑

i=1

d2i −mn ≥ 1

n
(

n∑
i=1

di)
2 −mn =

m(4m− n2)

n
,

原不等式得证。

注：这题实际上给出了托兰定理的一种新证明，即 m >
n2

4
的图中必有三角形。

例 4.9. 在一个 n× n 的方格点阵的左下角 (0, 0) 处有一只鸟，它每次可以在垂直方向往上飞 1 格，也
可以在水平方向往右飞任意格（不飞出表格），如果 m < n，那么鸟飞到直线 x+ y = m 上的飞法有多
少种？若 n = 7，那么鸟飞到右上角 (n− 1, n− 1) 处的飞法有多少种？

解.（1）设鸟飞到直线 x+ y = m 上的飞法有 am (0 ≤ m < n) 种。鸟飞到直线 x+ y = m 上时，若上
一步是向上飞一格，有 am−1 种飞法，若上一步是向右飞若干格，有 am−1 + am−2 + ...+ a0 种飞法。

am = am−1 + (am−1 + am−2 + ...+ a0), am−1 = am−2 + (am−2 + am−3 + ...+ a0),

所以am = 2am−1 + (am−1 − am−2) = 3am−1 − am−2, 初值为a0 = 1, a1 = 2,

又因为斐波那契数列 {Fn}n≥1 满足 F1 = F2 = 1, F3 = 2，且 F2n+1 = F2n +F2n−1 = 2F2n−1 +F2n−2 =

3F2n−1 − F2n−3，所以数列 {F2n+1}n≥0 的初值和递推式和 an 相同，an = F2n+1 对任意非负整数 n 成
立。
（2）6321 种。设从 (0, 0) 飞到 (i, j) 的飞法数为 Ai,j (0 ≤ i, j ≤ n − 1)，则 i, j ≥ 1 时，Ai,j =

Ai−1,j +2 ·Ai,j−1−Ai−1,j−1。初始条件如下：0 ≤ i ≤ n−1时，Ai,0 = 1；1 ≤ j ≤ n−1时，A0,j = 2j−1。
{Ai,j}0≤i,j≤6 如下图所示：

i 1 7 35 147 553 1925 6321
5 1 6 27 104 363 1182 3653

1 5 20 70 225 681 1970
1 4 14 44 129 360 968
1 3 9 25 66 168 416
1 2 5 12 28 64 144

0 1 1 2 4 8 16 32
0 5 j

例 4.10. N 个足球队参加比赛，赛制为单循环赛，每场比赛胜平负分别积 3、1、0 分。已知某队胜的
场次比别的队都少，但得分比别的队都多，那么至少有多少个队比赛？

证. 8 个队。
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例 4.11. 数列 {an}n≥0满足 a0 = 0, a1 = 1, ..., ap−1 = p−1，其中 p为质数。n ≥ p时，an = an−1+an−p。
求 ap3 模 p 的余数。

证. 法一：先证明对任意正整数 k 和非负整数 n，有 an =
k∑

j=0

(−1)j
(
k

j

)
an+kp−j 1⃝。对 k 作归纳：

k = 1 时，an = an+p − an+p−1， 1⃝式成立。k ≥ 2 时，假设 1⃝式对 k − 1 成立，则

an =
k−1∑
j=0

(−1)j
(
k − 1

j

)
an+(k−1)p−j =

k−1∑
j=0

(−1)j
(
k − 1

j

)
(an+kp−j − an+kp−j−1)

=
k−1∑
j=0

(−1)j
(
k − 1

j

)
an+kp−j −

k−1∑
j=0

(−1)j
(
k − 1

j

)
an+kp−j−1

=
k−1∑
j=0

(−1)j
(
k − 1

j

)
an+kp−j +

k∑
j=1

(−1)j
(
k − 1

j − 1

)
an+kp−j =

k∑
j=0

(−1)j
(
k

j

)
an+kp−j ,

所以 1⃝式对 k 成立。由归纳法知 1⃝式成立。令 k = p，得

an =

p∑
j=0

(−1)j
(
p

j

)
an+p2−j ≡ an+p2 + (−1)pan+p2−p (mod p), 2⃝

无论 p = 2 时或 p ≥ 3 时，都有： 2⃝式右边 ≡ an+p2 − an+p2−p = an+p2−1 (mod p)。于是 p2 − 1 是该数
列的一个周期，ap3 ≡ ap = p− 1 (mod p)。
法二：该数列的特征方程为 xp = xp−1 + 1，即 xp−1(x − 1) = 1。设 α 是一个特征根，我们证明

αp2−1 ≡ 1 (mod p)。这是因为 (α− 1)p ≡ αp − 1 (mod p)，所以

αp2−1 = (αp−1)p+1 = (
1

α− 1
)p+1 =

1

(α− 1)p · (α− 1)

≡ 1

(αp − 1) · (α− 1)
=

1

αp−1 · (α− 1)
= 1 (mod p),

设 f(x) = xp − xp−1 − 1，因为 f ′(x) = pxp−1 − (p− 1)xp−2 ≡ xp−2 (mod p)，所以 f(x) 在模 p 的意义
下没有重根。设它的特征根为 α1, α2, ..., αp，则存在 λ1, λ2, ..., λp ∈ Fp（Fp 的代数闭包），使得

an ≡ λ1α
n
1 + λ2α

n
2 + ...+ λpα

n
p (mod p),

又因为 αp2−1
i ≡ 1 (mod p), 1 ≤ i ≤ p，于是 an ≡ an+p2−1 (mod p)。

例 4.12. 托兰定理的另证：无向图的独立集指两两无边的顶点集。取 G 的最大独立集，设它有 α 个点，

则其余每个点都与这 α 个点有边，且度至多为 α，于是边数至多为 α(n− α) ≤ n2

4
。

证.
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5 组合问题-4

例 5.1. 平面上有 n(n ≥ 4) 个点，任意三点不共线。求证：以这些点中的四个点为顶点的面积为 1 的平

行四边形不超过
n2 − 3n

4
个 1⃝。

分析：称以给定的 n 个点为顶点，面积为 1 的平行四边形为好四边形。我们先证明一个简单的上界：好
四边形不超过

n2 − n

4
个。给定一条边，因为任意三点不共线，所以以它为边的面积为 1 的平行四边形

至多两个。于是

4 ·好四边形数 ≤ 2 ·
(
n

2

)
= n(n− 1), 好四边形数 ≤ n2 − n

4
,

为了得到
n2 − 3n

4
的上界，我们需要更精细的估计。

证. 设 n 个点为 A1, A2, ..., An。不妨设 A1 在 n 个点的凸包上，作过 A1 的直线 l 使得 A2, A3, ..., An

都在 l 一侧，并将它们按 A1Ai (2 ≤ i ≤ n) 与 l 的倾斜角大小逆时针排序（此时 A2, An 为 n 个点的凸
包上与 A1 相邻的两个点）。设以 A1 为顶点的好四边形有 x 个。
先证明：若 A1Ak 为一个好四边形的对角线，则不存在以 A1Ak 为边的好四边形。设这个好四边形

为 A1AiAkAj，过 Ai 作直线 li 与 A1Ak 平行，过 Aj 作直线 lj 与 A1Ak 平行，则以 A1Ak 为边的好
四边形对边必在 li 或 lj 上。不妨设对边在 li 上，因为 n 个点中没有三点共线，所以对边必有一顶点为
Ai，此时对边另一顶点必为 Aj 关于 A1 的对称点或 Aj 关于 Ak 的对称点，存在三点共线，矛盾！

又因为好四边形的对角线不可能为 A1A2 或 A1An，且以 A1A2 或 A1An 为边的好四边形各至多一
个（因为其余顶点都在这条边一侧），于是计算好四边形中以 A1 为顶点的边数，有

2x ≤ 2(n− 1− x)− 2, 4x ≤ 2n− 4, x ≤ n− 2

2
,

n = 4 时，好四边形数 ≤ n2 − 3n

4
= 1 成立。n ≥ 5 时，假设命题 1⃝对 4, 5, ..., n − 1 成立，则

以 A2, A3, ..., An 为顶点的好四边形数 ≤ (n− 1)2 − 3(n− 1)

4
=

n2 − 5n+ 4

4
，好四边形总数 ≤ n− 2

2
+

n2 − 5n+ 4

4
=

n2 − 3n

4
。命题 1⃝对 n 成立。由归纳法，命题 1⃝得证。

例 5.2. 平面上有 16 个点，其中任意三点不共线，现在要将它们两两配对连线段，且使得任意两条线
段不交，求方法数的最小可能值。

分析：称两两配对连线段，且使得任意两条线段不交的一个方案为一个好匹配。先考虑规模小的情形，
平面上若有四个点满足题设条件，好匹配数最小为 2，四个点构成凸四边形时取等。若有六个点满足题
设条件，好匹配数最小为 5，六个点构成凸六边形，或一个凸五边形和内部一个点时取等。

解. 若有 2m个点满足题设条件，我们证明好匹配数最小为卡特兰数 Cm =
1

m+ 1

(
2m

m

)
1⃝。m = 1

时是平凡的。m ≥ 2时，假设命题 1⃝对 1, 2, ...,m−1成立，设 2m个点为 A1, A2, ..., A2m。不妨设 A1 在
2m 个点的凸包上，作过 A1 的直线 l 使得 A2, A3, ..., A2m 都在 l 一侧，并将它们按 A1Ai (2 ≤ i ≤ 2m)

与 l 的倾斜角大小逆时针排序（此时 A2, A2m 为 2m 个点的凸包上与 A1 相邻的两个点）。i = 1, 2, ...,m
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时，连接线段 A1A2i，直线 A1A2i 将其余 2m− 2 个点分成两部分，分别有 2i− 2 和 2m− 2i 个点。将
每部分的点分别连成好匹配，由归纳假设及卡特兰数递推式，方法数至少为

C0Cm−1 + C1Cm−2 + ...+ Cm−1C0 = Cm,

所以命题 1⃝对 m 成立。由归纳法知命题 1⃝成立。练习：证明 2m 个点构成凸 2m 边形时好匹配数恰为
Cm。本题问的是 m = 8 的情形，此时好匹配数最小为 C8 = 1430。
参考文献：The number of non-crossing perfect plane matchings is minimized (almost) only by point

sets in convex position，https://arxiv.org/pdf/1502.05332。这篇文章证明了任意三点不共线的 2m 个
点连成不相交的线段方法数恰为卡特兰数，当且仅当这 2m 个点构成凸 2m 边形，或 m = 3，六个点构
成一个凸五边形和内部一个点。

例 5.3. 设 m,n 是正整数，m ≥ 3，A1, A2, ..., Am 是 m 个两两不交的 n 元正整数集，且满足对任意
1 ≤ i ≤ m 及任意 a ∈ Ai, b ∈ Ai+1，均有 b ∤ a（这里 Am+1 = A1）。求满足下面条件的正整数对 (u, v)

的数目的最大值：u, v 分别属于 A1, A2, ..., Am 中的两个不同集合，且 u | v。

解.

例 5.4. 设 n是一个正整数，A是 {1, 2, ..., n}的一个子集，一个把 n分成 k 部分的 A-分割是指将 n写
成 k 个数和的形式 n = a1 + a2 + ...+ ak，其中 a1, a2, ..., ak 都在 A 中，但不必不同。在此分割中，不
同部分数是指 {a1, a2, ..., ak} 中不同的元素个数。我们称一个把 n 分成 k 部分的 A-分割是“最优的”，
如果对任意 r < k，不存在把 n 分成 r 部分的 A-分割。求证：对于任意一个把 n 分成若干部分的“最
优的”分割，其不同部分数均不超过 3

√
6n。

证. 设 n = a1 + a2 + ...+ ak 是一个最优的 A-分割，设它的不同部分数为 l，所有不同的 ai, 1 ≤ i ≤ k

构成集合 A′ = {bj}lj=1, A′ ⊂ A 且 b1 < b2 < ... < bl。存在正整数 cj , 1 ≤ j ≤ l，使得 n =
l∑

j=1

cjbj。

下面证明对 A′ 的任意非空子集 P,Q，若 |P | ̸= |Q|，则
∑
x∈P

x ̸=
∑
y∈Q

y 1⃝。不妨设 |P | > |Q|，则

上述 n 的最优分割中有若干项组成集合 P。假设
∑
x∈P

x =
∑
y∈Q

y，将分割中组成 P 的各项替换为 Q 的

各项，这不改变分割中各项之和，但部分数减小，与 k 的最小性矛盾！所以命题 1⃝成立。对 1 ≤ j ≤ l，
设 Sj 为 A′ 中任意 j 个不同的数之和组成的集合，则若 1 ≤ i < j ≤ l，那么 Si ∩ Sj = ∅。下面证明
|Si| ≥ i(l − i) + 1 2⃝，这是因为

例 5.5. 设奇数 p ≥ 19，我们将 0, 1, ..., p − 1 染成两种颜色，然后互相独立且等可能随机地选择 xi ∈
{0, 1, ..., p− 1}, i = 1, 2, ..., p。求证：无论染色方式如何，x1, x2, ..., xp 同色且和是 p 的倍数的概率不小

于
3

p · 2p
。

引理 5.1. 设 f(x) =
∑
i≥0

aix
i，ω = e 2πi

k ，则
∑
j≥0

ajk =
1

k

k−1∑
i=0

f(ωi) 1⃝。这是因为 k ∤ j 时，
k−1∑
i=0

ωij =

1− ωjk

1− ωj
= 0，k | j 时

k−1∑
i=0

ωij = k，所以 1⃝式右边 =
1

k

k−1∑
i=0

∑
j≥0

ajω
ij =

∑
j≥0

aj(
1

k

k−1∑
i=0

ωij) = 1⃝式左边，

1⃝式成立。
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证. 设 S = {0, 1, ..., p− 1}, A = {a1, a2, ..., ak} ⊂ S 为染成红色的数集，B = {b1, b2, ..., bl} ⊂ S 为染成
蓝色的数集，则 k + l = p, S = A ⊔B。

设f(x) =
k∑

i=1

xai , f(x)p =
∑
j≥0

cjx
j , g(x) =

l∑
i=1

xbi , g(x)p =
∑
j≥0

djx
j ,

则cj = #{(x1, x2, ..., xp), xi均为红色且
p∑

i=1

xi = j},

dj = #{(x1, x2, ..., xp), xi均为蓝色且
p∑

i=1

xi = j},

题中所求的 x1, x2, ..., xp 同色且和是 p 的倍数的概率为
1

pp

∑
j≥0

(cjp + djp) 2⃝。设 ω = e
2πi
p 为 p 次单

位根，由引理， ∑
j≥0

cjp =
1

p

p−1∑
i=0

f(ωi)p,
∑
j≥0

djp =
1

p

p−1∑
i=0

g(ωi)p,

因为 f(x) + g(x) =

p−1∑
i=0

xi =
1− xp

1− x
，所以 1 ≤ i ≤ p − 1 时，f(ωi) + g(ωi) = 0。又因为 2 ∤ p，所以

f(ωi)p + g(ωi)p = 0, 1 ≤ i ≤ p− 1。

2⃝式 =
1

pp
· 1
p
·
p−1∑
i=0

[f(ωi)p + g(ωi)p] =
1

pp+1
[f(1)p + g(1)p] =

1

pp+1
(kp + lp)

≥ 1

pp+1
[(
p− 1

2
)p + (

p+ 1

2
)p] =

1

p · 2p
[(1− 1

p
)p + (1 +

1

p
)p],

只需证明 (1− 1

p
)p + (1 +

1

p
)p ≥ 3 3⃝。

3⃝式左边 = 2
∑
i≥0

(
p

2i

)
· 1

p2i
≥ 2 + 2

(
p

2

)
1

p2
+ 2

(
p

4

)
1

p4

= 2 + (1− 1

p
) +

1

12
(1− 1

p
)(1− 2

p
)(1− 3

p
), 4⃝

4⃝式右边关于 p 单调增，且 p = 19 时， 4⃝式右边 −3 =
1

12
· 18 · 17 · 16

193
− 1

19
=

24 · 17
193

− 1

19
> 0，

所以 p ≥ 19 时 3⃝式成立，题中所述的概率不小于 3

p · 2p
。

例 5.6. 有 1000 名同学参加夏令营，每名同学在夏令营里恰有 11 个朋友（朋友是相互的，自己不是自
己的朋友）。夏令营一共准备了 7 种颜色的营服，在夏令营开幕式拍大合照时，每名同学都穿上了夏令
营的营服，且任意一对朋友穿的营服颜色不同。主办方想让部分同学更换衣服的颜色后再拍一张合照，
且仍保证任意一对朋友穿的营服颜色不同。但是，有 80 名同学因为尺码问题无法更换衣服的颜色。求
证：可以让剩下学生中若干名（至少一名）学生更换衣服的颜色，使得仍保证任意一对朋友穿的营服颜
色不同。
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引理 5.2. 设 p 是奇素数，1 ≤ k ≤ p− 2，则
p−1∑
i=0

ik ≡ 0 (mod p)。证明如下：

设 q 是模 p 的一个原根，则 {qi}0≤i≤p−1 是模 p 的完系，

p−1∑
i=0

ik ≡
p−1∑
i=0

(qi)k (mod p), (qk − 1)

p−1∑
i=0

ik ≡ 0 (mod p),

因为 p ∤ qk − 1，所以 p |
p−1∑
i=0

ik。

证. 将学生视为顶点，朋友关系视为边，我们得到无向图 G = (V,E), |V | = 1000，设 V = {vi}1≤i≤1000，

则 d(vi) = 11, |E| = 1

2

1000∑
i=1

d(vi) = 5500。对每个 1 ≤ i ≤ 1000，设 Xi ∈ {0, 1, 2, ..., 6}，j ∈ {0, 1, 2, ..., 6}

时 Xi = j 表示学生 vi 的衣服颜色为 j。假设最后 80 名学生的衣服颜色固定，即 X921, X922, ..., X1000

取定值，考虑

F =
∑

0≤Xi≤6
1≤i≤920

∏
(u,v)∈E

(Xu −Xv), 我们证明F ≡ 0 (mod 7), 1⃝

设f(X1, X2, ..., X920) =
∏

(u,v)∈E

(Xu −Xv) =
∑

α=(α1,α2,...,α920)

AαX
α1
1 Xα2

2 ...Xα920
920 , Aα ̸= 0,

则 f 的次数至多为 |E| = 5500，f 有 920个变量，且同学们的一种穿衣方式Xi = xi ∈ {0, 1, 2, ..., 6}, 1 ≤
i ≤ 920 合法 ⇐⇒对任意(u, v) ∈ E, xu ̸= xv ⇐⇒ f(x1, x2, ..., x920) ̸= 0 (mod 7)。

F =
∑

0≤Xi≤6
1≤i≤920

f(X1, X2, ..., X920) =
∑

0≤Xi≤6
1≤i≤920

∑
α=(α1,α2,...,α920)

AαX
α1
1 Xα2

2 ...Xα920
920

=
∑

α=(α1,α2,...,α920)

Aα

920∏
i=1

(
∑

0≤Xi≤6

Xαi

i ), 2⃝

因为
920∑
i=1

αi ≤ 5500 < 6 · 920 = 5520，所以存在 1 ≤ k ≤ 920，使得 αk ≤ 5。1 ≤ αk ≤ 5 时由引理

知 7 |
∑

0≤Xk≤6

Xαk

k 3⃝，αk = 0 时 2⃝式中应取 00 = 1,
∑

0≤Xk≤6

X0
k = 7 ≡ 0 (mod 7)， 3⃝式同样成立。

所以对 2⃝式右边的每一组 α = (α1, α2, ..., α920)，都有 7 |
920∏
i=1

(
∑

0≤Xi≤6

Xαi

i )，于是 7 | 2⃝式右边 = F。由

题意，至少有一种取值 Xi = xi ∈ {0, 1, 2, ..., 6}, 1 ≤ i ≤ 920 使得 f(x1, x2, ..., x920) ̸= 0 (mod 7)。假
设这样的取值方式是唯一的，则 F = f(x1, x2, ..., x920) ̸≡ 0 (mod 7)，这与 1⃝式矛盾。所以存在另一组
(x′

1, x
′
2, ..., x

′
920) ̸= (x1, x2, ..., x920) 使得 f(x′

1, x
′
2, ..., x

′
920) ̸≡ 0 (mod 7)，它对应一个不同的学生合法穿

衣方式。

例 5.7. 对整数 n ≥ 2，考虑一张 n × n 的方格表，最开始每个方格都是空的，我们可以进行如下操
作：（1）如果某个方格（不能是最右边一列或最上面一行的方格）与其上方、右方邻格都是空的，那么
我们可以在这 3 个方格里各放上一枚石子；（2）如果某一行的每个方格里都有石子，那么我们可以拿掉
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这一行的所有石子；（3）如果某一列的每个方格里都有石子，那么我们可以拿掉这一列的所有石子。求
所有的 n，使得我们可以经过有限次（至少一次）操作，将方格表再变回所有方格为空的状态。

证.

例 5.8. 设 G = G(V,E) 是一个有 n 个顶点的简单图，如果能将顶点集 V 分为两个非空的部分 A,B，
使得连接 A,B 的边数不超过 100，那么连接 A,B 的每条边都可以被称为“瓶颈边”。求证：“瓶颈边”
的数目不超过 100n。

证. 我们证明瓶颈边数目不超过 100(n − 1)。设所有将顶点集 V 分为两个非空的部分 A,B，使得连
接 A,B 的边数不超过 100 的不同方式为 (Ai, Bi) (1 ≤ i ≤ m)（这里不考虑 Ai, Bi 的顺序）。我们按
i = 1, 2, ...,m 的顺序依次从图中删除 (Ai, Bi) 之间的瓶颈边。我们宣称：只要某次删除了至少一条边，
则图中连通分支数量严格增加。这是因为这条边连接的两个顶点这一步之前在同一连通分支，操作完这
一步之后在不同连通分支。
因为初始时连通分支数 ≥ 1，结束时连通分支数 ≤ n，所以删除了至少一条边的次数 ≤ n−1。每次

删除 (Ai, Bi) 之间的瓶颈边时，被删边的数目不超过 (Ai, Bi) 之间的瓶颈边总数，于是每次至多删 100
条边。所以瓶颈边至多有 100(n− 1) 条。
注：（1）若图中允许有重边，则当图 G 为一棵每条边重复 100 次的树时，瓶颈边恰好有 100(n− 1)

条。还能找到别的取等条件么？
（2）事实上，将题中的 100 换成任意正整数 k，结论依然成立。

例 5.9 (Erdös-Ginzburg-Ziv 定理). 设 n 是正整数，求证：在任意 2n− 1 个整数中，必然存在 n 个数，
它们的和是 n 的倍数。

证. n = 1 时原命题成立。n ≥ 2 时，（1）若 n 为素数，设 n = p, [2p− 1] = {1, 2, ..., 2p− 1}, 2p− 1 个
整数为 {ai}2p−1

i=1 。假设原命题不成立，则对任意的 I ⊂ [2p− 1], |I| = p，有 p ∤
∑
i∈I

ai 由费马小定理，

∑
I⊂[2p−1]

|I|=p

(
∑
i∈I

ai)
p−1 ≡

∑
I⊂[2p−1]

|I|=p

1 ≡
(
2p− 1

p

)
≡ (2p− 1)(2p− 2)...(p+ 1)

(p− 1)!
≡ 1 (mod p), 1⃝

另一边，对每个 I ⊂ [2p− 1], |I| = p，我们有

(
∑
i∈I

ai)
p−1 =

∑
aα1

i1
aα2

i2
...aαk

ik

(
p− 1

α1, α2, ..., αk

)
, 2⃝

上式右边是对所有 1 ≤ k ≤ p − 1, i1 < i2 < ... < ik, {i1, i2, ..., ik} ⊂ I, α1 + α2 + ... + αk =

p−1, α1, α2, ..., αk ∈ Z+求和。2⃝式右边的每项应该在 1⃝式左边出现了
(
2p− 1− k

p− k

)
=

(2p− 1− k)...p

(p− k)!

次。因为 p |
(
2p− 1− k

p− k

)
，所以

1⃝式左边 =
∑

aα1

i1
aα2

i2
...aαk

ik

(
p− 1

α1, α2, ..., αk

)(
2p− 1− k

p− k

)
≡ 0 (mod p), 3⃝
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上式中间是对所有 1 ≤ k ≤ p−1, 1 ≤ i1 < i2 < ... < ik ≤ 2p−1, α1+α2+...+αk = p−1, α1, α2, ..., αk ∈
Z+ 求和。 3⃝式与 1⃝式矛盾！所以 n 为素数时原命题成立。
（2）若 n为合数，假设已经证明命题对 1, 2, ..., n−1成立。设 n = qr, q, r ∈ Z+, q, r ≥ 2, 2n−1个整

数为 {ai}2n−1
i=1 。则 a1, a2, ..., a2q−1中有 q个和是 q的倍数，设它们为 a1,1, a1,2, ..., a1,q,

q∑
i=1

a1,i = qb1, b1 ∈

Z。剩下 2n−1−q 个数中又可取 q 个和是 q 的倍数，以此类推，可取 2r−1组 {aj,i}qi=1, 1 ≤ j ≤ 2r−1，

每组和是 q 的倍数，且这 (2r − 1)q 个数是 {ai}2n−1
i=1 中不同的项。设

q∑
i=1

aj,i = qbj , bj ∈ Z, 1 ≤

j ≤ 2r − 1，则由归纳假设，在 {bj}2r−1
j=1 中有 r 个数之和是 r 的倍数。设

r∑
l=1

bjl ≡ 0 (mod r)，则

r∑
l=1

q∑
i=1

ajl,i = q
r∑

l=1

bjl ≡ 0 (mod qr)，所以 {ai}2n−1
i=1 中有 n 个数之和是 n 的倍数，命题对 n 成立。由

归纳法知原命题对任意 n ∈ Z+ 成立。

29



6 综合练习-2

例 6.1. 在函数 y = cosx 与 y = a tanx 图像的任一交点处分别作它们的切线。证明：对任意 a ̸= 0，这
两条切线都相互垂直。

证.

例 6.2. 设平行四边形 ABCD 不是矩形。在其内部取一点 P，使得 △PAB 与 △PCD 的外接圆的公
共弦垂直于 AD。证明：这两个外接圆的半径相等。

证.

例 6.3. 给定一个次数为 n > 5 的整系数多项式 P (x)，已知它有 n 个不同的整数根。证明：多项式
P (x) + 3 有 n 个不同的实根。

证.

例 6.4. 多于四名运动员参加网球训练（没有平局）。每个训练日，每名选手恰好参加一场训练。训练结
束时，每名选手都恰好与其他所有选手各比赛一次。若一名选手至少赢过一场，并且在取得首胜之后再
也没有输过，则称他为“顽强的”，其余选手称为“非顽强的”。是否在多于一半的训练日中，都存在一
场比赛，其双方选手都是非顽强的？

证.

例 6.5. 某四面体的所有四条高的中点都在其内切球面上。问：该四面体是否一定是正四面体？

证.

例 6.6. 称三个实数构成一个“三联体”，如果其中一个数是另外两个数的算术平均数。给定一个由正整
数组成的无穷数列 {an}，已知 a1 = a2 = 1，且对于 n > 2，an 是使 a1, a2, ..., an 中不包含三联体的最

小正整数。证明：对任意 n，都有 an ≤ n2 + 7

8
。

证.

例 6.7. 给定严格上升的函数 f : N0 → N0（其中 N0 是非负整数集合），对任何 m,n ∈ N0，满足关系
式 f(n+ f(m)) = f(n) +m+ 1。试求 f(2023) 的一切可能值。

证.

例 6.8. 最少需要有多少个不同的整数，才有可能从它们中既可选出长度为 5 的等差数列，又可选出长
度为 5 的等比数列？

证.

例 6.9. 在 △ABC 中，高 BE 与高 CF 相交于点 H，而 M 是边 BC 的中点，X 则是 △BMF 与
△CME 的内切圆的内公切线的交点。证明：X,M,H 三点共线。

证.
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例 6.10. 今有一架绝对精确的双盘天平和 50 个砝码，这些砝码的重量分别为

arctan 1, arctan 1

2
, arctan 1

3
, ..., arctan 1

50
,

证明：可以从中选出 10 个砝码，每端放 5 个，使得天平平衡。

证.

例 6.11. 分别以 B,P, T 表示凸多面体的顶点数目，棱数和具有公共顶点的三角形面的最大数目。证明：
B
√
P + T ≥ 2P。[例如在四面体中，B = 4, P = 6, T = 3，满足等式；而对于三棱柱（B = 6, P = 9, T = 1）

和立方体（B = 8, P = 12, T = 0）则成立严格不等式。]

证.
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例 6.12. （1）设 A 是集合 S = {1, 2, ..., 1000000} 的一个恰有 101 个元素的子集，证明：在 S 中存在
数 t1, t2, ..., t100，使得集合 Aj = {x+ tj | x ∈ A}, j = 1, 2, ..., 100 中，每两个的交集为空集。（2）若 A

是 S = {1, 2, ..., n} 的一个 k 元子集，m 为正整数，且 m 满足条件 n > (m− 1)(

(
k

2

)
+ 1)，则存在 S

中的元素 t1, t2, ..., tm，使得 Aj = {x+ tj | x ∈ A}, j = 1, 2, ...,m 中任意两个的交集为空集。

证.
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