
组合问题选讲-1

下面这题来自邹瑾老师，虽然披着组合数学的面纱，但它实际上是一个和分圆多项式有关的高等代
数问题。后面三题是笔者自己和董振言同学思考的相关问题。

例 0.1. 求作一个 1990 边形，它的各内角相等，各边长分别为 12, 22, ..., 19902。事实上，本题中 1990
可以改为任意 n = 2pq，p, q ≥ 3 为互质的正奇数。

证. 1990 = 2 · 5 · 199。先作一个 995 边形，它的各内角相等，各边长分别为 1, 2, ..., 995。设 p = 5, q =

199, ω = e 2πi
pq 为 pq 次单位根。我们构造 1, 2, ..., pq 的一个排列 a0, a1, ..., apq−1，使得

a0 + a1ω + ...+ apq−1ω
pq−1 = 0, 1⃝

设 g(ω) = 1 + 2ωq + ...+ pω(p−1)q，因为 ωq 为 p 次单位根，所以 1 + ωq + ...+ ω(p−1)q = 0，

g(ω) = (p+ 1) + (p+ 2)ωq + ...+ 2pω(p−1)q = ...

= [(q − 1)p+ 1] + [(q − 1)p+ 2]ωq + ...+ qpω(p−1)q,

又因为 ωp 为 q 次单位根，所以 1 + ωp + ...+ ω(q−1)p = 0，

0 = [1 + ωp + ...+ ω(q−1)p]g(ω) = 1 + 2ωq + ...+ pω(p−1)q

+ωp[(p+ 1) + (p+ 2)ωq + ...+ 2pω(p−1)q] + ...

+ω(q−1)p{[(q − 1)p+ 1] + [(q − 1)p+ 2]ωq + ...+ qpω(p−1)q},

上式右边展开后每项中 ω 的幂次为 {kp+ lq | 0 ≤ k ≤ q − 1, 0 ≤ l ≤ p− 1}，其中任意两个不同的幂次
k1p+ l1q, k2p+ l2q 都满足

(k1 − k2)p ̸≡ (l2 − l1)q (mod pq), 即k1p+ l1q ̸≡ k2p+ l2q (mod pq),

所以这些幂次恰好组成一个模 pq 的完全剩余系， 1⃝式得证。
回到原题，由以上论述，可以作一个 995边形，它的各内角相等，各边长分别为 4k−1 (1 ≤ k ≤ 995)。

对任意 1 ≤ k ≤ 995，将长为 4k − 1 的边换成长为 (2k − 1)2, (2k)2，且方向相反的一对边，知原命题成
立。

例 0.2. 设 p 为奇素数，求证：各内角都相等，且边长为正整数的 p 边形一定是正 p 边形。

引理 0.1. （1）设 g(x) = 1 + x+ ...+ xp−1，则 g(x) 是 Q[x] 中的既约多项式。这是因为

g(x+ 1) =
(x+ 1)p − 1

(x+ 1)− 1
= xp−1 +

(
p

p− 1

)
xp−2 + ...+

(
p

2

)
x+

(
p

1

)
, 1⃝

设 h(x) = 1⃝式右边，则 h(x) 满足首项系数为 1，其余各项系数被 p 整除，且常数项不被 p2 整除。由
艾森斯坦判别法，h(x) 是 Q[x] 中的既约多项式，于是 g(x) = h(x− 1) 也是。
（2）设 F 为任意域，则 F[x] 中的任意两个非零多项式之间可以做带余除法，由此推出 F[x] 中任意
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两个非零多项式 f(x), g(x) 有最大公因式 d(x)，且有裴蜀恒等式：存在 F[x] 中的多项式 u(x), v(x) 使
得 u(x)f(x) + v(x)g(x) = d(x)。u(x), v(x) 可由 F[x] 中的带余除法和扩展的欧几里得算法具体求出。

证. 设 ω = e 2πi
p 为 p 次单位根，正整数 a0, a1, ..., ap−1 满足 a0 + a1ω + ... + ap−1ω

p−1 = 0，我们证明
a0 = a1 = ... = ap−1。设 f(x) = a0+a1x+...+ap−1x

p−1，g(x) = 1+x+...+xp−1，q(x) = f(x)−ap−1g(x)，
则 f(ω) = g(ω) = q(ω) = 0。假设 q(x) 不是零多项式，则 0 ≤ deg q(x) ≤ n − 2，由引理（2），g(x)

与 q(x) 在 Q[x] 中有最大公因式。又因为 g(x) 在 Q[x] 中既约，所以这个最大公因式必为常数，不妨设
它为 1。由引理（2），存在 u(x), v(x) ∈ Q[x]，使得 u(x)g(x) + v(x)q(x) = 1。上式中代入 x = ω，由
g(ω) = q(ω) = 0 得到矛盾！所以 q(x) 是零多项式，a0 = a1 = ... = ap−1。

例 0.3. 设 p 为素数。求证：不存在各内角都相等，且各边长分别为 1, 2, ..., p2 的 p2 边形。

引理 0.2. （1）设 g(x) = 1 + xp + ...+ x(p−1)p，则 g(x) 是 Q[x] 中的既约多项式。这是因为

g(x+ 1) = 1 + (x+ 1)p + ...+ (x+ 1)(p−1)p

设 h(x) = 1⃝式右边，则 h(x) 满足首项系数为 1，其余各项系数被 p 整除，且常数项不被 p2 整除。由
艾森斯坦判别法，h(x) 是 Q[x] 中的既约多项式，于是 g(x) = h(x− 1) 也是。

证. 设 ω = e
2πi
p2 为 p2 次单位根，正整数 a0, a1, ..., ap2−1 满足

a0 + a1ω + ...+ ap2−1ω
p2−1 = 0,

我们证明对任意 0 ≤ j ≤ p − 1，有 aj = aj+p = ... = aj+(p−1)p。设 f(x) = a0 + a1x... + ap2−1x
p2−1，

因为 ω 在 Q[x] 上的极小多项式为 g(x) = 1 + xp + ... + x(p−1)p，且 f(ω) = 0，所以在 Q[x] 中有
g(x) | f(x)。设 f(x) = g(x)h(x)，则 degh(x) = deg f(x) − deg g(x) = p − 1。因为 g(x) 为本原多
项式，由高斯引理，h(x) ∈ Z[x]。设 h(x) = c0 + c1x + ... + cp−1x

p−1，则对任意 0 ≤ j ≤ p − 1，有
cj = aj = aj+p = ... = aj+(p−1)p。于是 a0, a1, ..., ap2−1 不可能互不相同。
注：（1）可将本题中的 p2 改为任意的 pα，α ≥ 2。此时若有正整数 a0, a1, ..., apα−1 满足

a0 + a1ω + ...+ apα−1ω
pα−1 = 0,

则对任意 0 ≤ j ≤ pα−1 − 1，有 aj = aj+pα−1 = ... = aj+(p−1)pα−1。
（2）可以用下列事实代替高斯引理：带余除法中，整系数多项式除以整系数首一多项式，商和余式

都是整系数多项式。

例 0.4. 求证：不存在各内角都相等，且各边长分别为 12, 22, ..., 122 的 12 边形。

证. 设 ω = e 2πi
12 为 12 次单位根，正整数 a0, a1, ..., a11 满足

a0 + a1ω + ...+ a11ω
11 = 0,

设 f(x) = a0 + a1x...+ a11x
11，因为 ω 在 Q[x] 上的极小多项式为 g(x) = 1− x2 + x4，且 f(ω) = 0，所

以在 Q[x] 中有 g(x) | f(x)。设 f(x) = g(x)h(x)，则 degh(x) = deg f(x)− deg g(x) = 7。因为 g(x) 为
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本原多项式，由高斯引理，h(x) ∈ Z[x]。设 h(x) = c0 + c1x+ ...+ c7x
7，则

a0 + a1x...+ a11x
11 = (1− x2 + x4)(c0 + c1x+ ...+ c7x

7),

a0 = c0, a2 = c2 − c0, a4 = c4 − c2 + c0, a6 = c6 − c4 + c2, a8 = −c6 + c4, a10 = c6,

a1 = c1, a3 = c3 − c1, a5 = c5 − c3 + c1, a7 = c7 − c5 + c3, a9 = −c7 + c5, a11 = c7,

假设 a0, a1, ..., a11 恰为 12, 22, ..., 122 的一个排列，则

c2 = a0 + a2 = a6 + a8, c4 = a2 + a4 = a8 + a10, a2 − a8 = a6 − a0 = a10 − a4, 1⃝

同理，c3 = a1 + a3 = a7 + a9, c5 = a3 + a5 = a9 + a11, a3 − a9 = a7 − a1 = a11 − a5, 2⃝

12, 22, ..., 112 中不存在五个不同的数，和 122 一起满足 1⃝或 2⃝式。也就是说，不存在不同的 x, y, z, u, v ∈
{1, 2, ..., 11}，使得 122 − x2 = y2 − z2 = u2 − v2。枚举 x，再对 122 − x2 作质因数分解即可。

下面这题来自付云皓老师，证法十分巧妙，有加性组合的背景。

例 0.5. 一个 13× 13 的方格表的每个方格里有一个整数，求证：我们可以选择 2 行 4 列，使得它们交
叉处的 8 个方格内的数之和是 8 的倍数。

引理 0.3. （1）三个整数中必有两个数同奇偶，它们的和为偶数。
（2）七个整数中必有四个数和为四的倍数，证明如下：由（1），可先取出两数 a1, a2，它们和为偶

数；再从剩余五个数中取出两数 a3, a4，它们和为偶数；最后从剩余三个数中取出两数 a5, a6，它们和
为偶数。a1 + a2, a3 + a4, a5 + a6 三数模 4 余 0 或 2，其中必有两数模 4 余数相同，它们的和被四整除。
该引理是 Erdös-Ginzburg-Ziv 定理的特殊情形。

证. 将每两行看作一个抽屉，共
(
13

2

)
= 78 个抽屉。同一列的两个数如果和为偶数，将它们看作一个

苹果放入对应行的抽屉中。设第 i 列有 αi 个偶数，13− αi 个奇数，则它们之间有(
αi

2

)
+

(
13− αi

2

)
≥

(
6

2

)
+

(
7

2

)
= 36, 1⃝

对数和为偶数，即这列有至少 36 个苹果，等号成立当且仅当 αi = 6, 7。方格表的 13 列中总共有至少
13 · 36 = 6 · 78 个苹果。
（1）存在一个抽屉有至少 7 个苹果，即存在两行七列使得每列两数之和均为偶数。此时由引理，必

能取出四列使得这两行四列和为 8 的倍数。
（2）每个抽屉恰有 6 个苹果，此时对每个 1 ≤ i ≤ 13， 1⃝式等号都成立，αi = 6, 7。我们证明这是

不可能的。考察前三行，它们在每列对应了三个数，其中和为偶数的两数对只能有 1 个或 3 个。于是
方格表的 13 列中总共有奇数个苹果属于前三行中的两行（它们组成三个抽屉），这与这三个抽屉各有 6
个苹果矛盾！
注：（1）笔者曾尝试将每四列看作一个抽屉，将同一行和为 4 的倍数的四元组看作一个苹果。设某

行 13 个数中模 4 余 0,1,2,3 的各有 a, b, c, d 个，因为

4 = 0 + 0 + 0 + 0 = 1 + 1 + 1 + 1 = 2 + 2 + 2 + 2 = 3 + 3 + 3 + 3
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= 0 + 0 + 1 + 3 = 1 + 1 + 2 + 0 = 2 + 2 + 3 + 1 = 3 + 3 + 0 + 2

= 0 + 0 + 2 + 2 = 1 + 1 + 3 + 3,

且 a+ b+ c+ d = 13，所以和为 4 的倍数的四元组数为(
a

4

)
+

(
b

4

)
+

(
c

4

)
+

(
d

4

)
+

(
a

2

)
bd+

(
b

2

)
ca+

(
c

2

)
db+

(
d

2

)
ac+

(
a

2

)(
c

2

)
+

(
b

2

)(
d

2

)
≥ 50,

当且仅当 (a, b, c, d) = (7, 6, 0, 0)及其置换时上式等号成立。假设方格表有 29行，则抽屉总数为
(
13

4

)
=

715，苹果总数至少有 29 · 50 = 1450 个，必有一个抽屉有至少 ⌈1450
715

⌉ = 3 个苹果。这三个四元组和都
为 4 的倍数，由引理知必有两个四元组和为 8 的倍数。
（2）是否存在 13× 12 或 12× 13 的方格表，使得其中没有两行四列和为 8 的倍数？
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